
Appendix A-G (online)

Online appendices for Hartvig, M., et al., Food web framework for size-structured
populations. J. Theor. Biol. (2011), doi:10.1016/j.jtbi.2010.12.006.

Appendix A. Derivation of predation mortality

Predators with a size between m and m+ dm have a food intake rate of s(mp,m)f(m)hmnθN(m)dm
for mp sized prey. The total density of food available from all prey sizes to the predators in [m ;m+ dm]
is ϕ(m) (5), meaning that the mortality experienced by a mp sized individual is:

µp,i(mp) =
∑
j

∫
s(mp,m)fj(m)hmnθj,iNj(m)

ϕj(m)
dm. (A.1)

The maximum food intake may be expressed as a function of f(m), v(m), and ϕ(m) via (6), such that
the predation mortality can be written as:

µp,i(mp) =
∑
j

∫
s(mp,m)(1− fj(m))v(m)θj,iNj(m) dm. (A.2)

By using the EQT assumptions of constant feeding level and a power law community spectrum (cf.
section 3) the mortality reduces to µp(mp) = θ(1 − f)

∫
s(mp,m)v(m)κcm

−λ dm, which can be solved
analytically:

µp(mp) = αpm
n−1
p , (A.3)

where αp = θ(1− f)
√
2πκcγσβ

1+q−λ exp
[
1
2
σ2(1 + q − λ)2

]
.

Appendix B. Available food and the physiological level of predation a

Using the EQT assumption of a power law community spectrum allows calculation of the available
food density ϕ(m) = θ

∫
s(mp,m)κcm

−λ
p mp dmp:

ϕ(m) = αϕθκcm
2−λ, (B.1)

where αϕ =
√
2πσβλ−2 exp

[
1
2
σ2(2− λ)2

]
.

Using the EQT assumption of constant feeding level yielding λ = 2 + q − n allows us to write θκc =
fh/(αϕγ(1 − f)) by rearranging the expression of the feeding level (6). Using this and the definition
of ~ allows writing αp = c(~ + k)β2n−q−1/α where c = exp

[
1
2
σ2

(
(1 + q − λ)2 − (2− λ)2

)]
= 1.03 ≈ 1.

Ultimately using the definition of fc allows writing the physiological level of predation a = αp/~ as:

a = c
f

f − fc
β2n−q−1/α. (B.2)

Appendix C. Calculating efficiency ε of offspring production

The efficiency of turning energy into offspring is denoted ε. It includes losses due to behavioural
aspects, pre-hatching mortality, and that the energy contents in gonadic tissue is higher than in somatic
tissue. It is a quantity that is difficult to measure, but for n = p its value can be derived.

The energy (in units of mass) routed into reproduction (for n = p) is ψ(m,m∗)~mn where ~ = αfh−k.
The energy of the produced offspring is then, Eo(m) = εψ(m,m∗)~mn:

Eo(m) = ε~η1−n
∗ mn−1

∗ m. (C.1)

From Gunderson (1997) we have the yearly mass-specific allocation to reproduction:

ϱ(m∗) = ϱ0η
1−n
∗ mn−1

∗ , (C.2)

where ϱ0 = 1.2 g1−n/year is obtained using least sum of squares in fitting the curve to the data for
oviparous fish in Gunderson (1997). Equalling (C.2) and Eo/m allow us to determine the efficiency of
offspring production ε:

ε =
ϱ0
~

≈ 0.12. (C.3)
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Appendix D. Setting the search rate prefactor γ from initial feeding level f0

Food for the smallest individuals in the spectra will be supplied by the background spectrum. If we
assume that the resource spectrum is at carrying capacity κ then an equilibrium initial feeding level f0 for
the small individuals can be calculated using (6).

Alternatively we may specify an initial feeding level f0 and derive one other parameter. By solving
the feeding level for γ by using the analytical solution for the density of food ϕ(m) (B.1) we find γ as a
function of f0:

γ =
f0h

(1− f0)αϕθi,Rκ
≈ f0hβ

2−λ

(1− f0)
√
2πσθi,Rκ

. (D.1)

Appendix E. Parameter estimation

Individual growth: From Kitchell and Stewart (1977) we obtain an estimate of specific dynamic action
on 15 % of food consumption, and conservative estimates of egestion and excretion on 15 % and 10 %
respectively. This results in an assimilation efficiency of α = 0.6.

The maximum intake scales with a 0.6–0.8 exponent, with n = 0.75 being an approximate average
value (Jobling, 1994). Andersen and Riis-Vestergaard (2004) provides a length-based relationship for the
maximum intake rate based on a whiting study adopted for saithe. Using m = 0.01l3 (m in g and l in cm)
(Peters, 1983), and an energy content of 5.8 kJ/g (fish) or 4.2 kJ/g (invertebrates) (Boudreau and Dickie,
1992) yields a prefactor h for the maximal food intake on 83 g1−n/year or 114 g1−n/year (at 10◦C). These
intake values overestimate the intake of large individuals since Andersen and Riis-Vestergaard (2004) use
an intake exponent of 0.67 instead of n = 0.75. Due to this a value of h = 85 g1−n/year is selected, which
also provides reasonable fits to ’cod-like’ growth curves (m∗ = 5 kg).

The standard metabolism scaling exponent p for fish is slightly higher than for other taxa, around
0.8 from intra- and interspecies measurements (Winberg, 1956; Killen et al., 2007). For simplicity we
assume p = n. The first term (acquired energy) in the growth model (8) is αf(m)hmn where the feeding
level f(m) is a decreasing function of body size (see Results). This has the effect that even when n = p is
assumed the acquired energy term still effectively scale with a smaller exponent than the maintenance term
kmp in accordance with the experimental data on food intake and standard metabolism. Furthermore it
is noted that this clearly makes the individuals in each functional species non-neutral. The bioenergetic
consequences of n ̸= p has been explored in detail by Andersen et al. (2008).

The prefactor for standard metabolism can from Peters (1983) be determined to 6.5 g1−n/year if the
diet is composed of only invertebrates and 4.7 g1−n/year if all the energy is from fish. Both values were
corrected to 10◦C using Q10 = 1.83 (Clarke and Johnston, 1999). It is assumed that energy costs due
to activity can be described with an activity multiplier on the standard metabolic rate. Estimations of
activity costs are difficult to obtain, but activity multipliers are often reported in the range 1 to 3; e.g. 1.25
for North Sea cod (Hansson et al., 1996), 1.7 for dace (Trudel and Boisclair, 1996), and 1.44-3.27 for saithe
(Andersen and Riis-Vestergaard, 2004) (however see also Rowan and Rasmussen (1996); He and Stewart
(1997)). A reasonable value of the prefactor for the standard metabolism and activity costs is assumed to
be k = 10 g1−n/year corresponding to an activity multiplier in the range 1.5 to 2.1.

Food encounter: The preferred predator-prey mass ratio is set to β = 100 (Jennings et al., 2002)
and the width of the selection function to σ = 1, which catches the general picture for at least cod and
dab (Ursin, 1973). It should be noted that small organisms such as copepods have a larger σ of 3–4.5
(Ursin, 1974), but for simplicity and since focus is on species with rather large m∗ the width σ will be held
constant.

The exponent for swimming speed is q = 0.8 (Andersen and Beyer, 2006). The prefactor γ for the
volumetric search rate is difficult to assess from the literature. An alternative approach is to determine it
as a function of of initial feeding level f0 via (D.1). Experience with the model shows that feeding level is
a decreasing function of body size. This means that it is sensible to use an initial feeding level f0 that is
larger than the expected average feeding level f . In this study a default value of f0 = 0.6 is used. This
along with default parameters yields γ = 0.8 · 104 m3g

−q
/year (Table 1). An alternative estimate of γ

is possible by multiplying the prefactors for swimming speed (Ware, 1978) and swept reactive field area

(reactive radius assumed equal to body length): γ = 20.3 · π · 0.01−2/3cm3g
−q
/s ≈ 4.3 · 104 m3g

−q
/year,

which indeed justifies the use of f0 = 0.6.
Mortality: Realistic energy reserve sizes may be ξ ∈ [5%; 20%], and in the present study ξ = 0.1 is

used. A widely used background mortality for ’cod-like’ m∗ = 5kg fishes is µb = 0.1 year−1, which yields
µ0 = 0.84 g1−n/year.
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Reproduction: The efficiency of offspring production was not found in the literature. However, an
analytical expression may be obtained (for n = p) by combining the calculation of yearly mass-specific
allocation to reproduction from the bioenergetic model (Appendix C) with empirical measurements (Gun-
derson, 1997), which yields ε = ϱ0/~ ≈ 0.1. The fraction of asymptotic size to mature at is η∗ = 0.25
(Andersen et al., 2008). Offspring mass is m0 = 0.5 mg which corresponds to an egg diameter of 1 mm
(Wootton, 1979; Chambers, 1997).

Resource spectrum: The carrying capacity of the resource spectrum should equal the magnitude of the
community spectrum: κm−λ, with an exponent λ = 2 − n + q = 2.05 (Andersen and Beyer, 2006). The
magnitude of the resource spectrum is set to κ = 5 · 10−3 gλ−1/m3, which is comparable with findings
from empirical studies (Rodriguez and Mullin, 1986). The constant for resource regeneration rate is r0 = 4
g1−p/year at 10◦C (Savage et al., 2004). The cut-off of the resource spectrum is set to include mesoplankton,
mcut = 0.5 g.

Appendix F. Expected Lifetime Reproductive Success

The expected lifetime reproductive success can be split into two components: 1) the probability of
surviving to become adult, and 2) lifetime reproduction per adult.

Appendix F.1. Survival probability

If we set ∂N
∂t

= 0 in (1) we may obtain the steady-state solution as:

N(m) =
K(m∗)

g(m,m∗)
exp

(
−
∫

µ(m)

g(m,m∗)
dm

)
, (F.1)

where K(m∗) is the constant from the integration along m. We notice that the probability of surviving

from size m0 to size m is pm0→m = exp
(
−
∫m

m0

µ(m′)
g(m′,m∗)

dm′
)
, which along with pm0→m0 = 1 allow us to

write the survival probability as:

pm0→m =
N(m)g(m,m∗)

N(m0)g(m0,m∗)
. (F.2)

Appendix F.2. Lifetime adult reproduction

The amount of energy an adult belonging to a m∗ population will spend on reproduction throughout
its life is:

Rlife(m∗) =

∫ ∞

t∗

pt∗→tψ(m,m∗)E(m)dt,

where t∗ is maturation age, and ψ(m,m∗)Ei(m) the rate at which energy is allocated to reproduction.
Noting that g(m,m∗) =

dm
dt

allows us to write this as:

Rlife(m∗) =

∫ M

m∗

pm∗→m
ψ(m,m∗)E(m)

g(m,m∗)
dm. (F.3)

Appendix G. Details of Numerical Methods

The model is in the form of a series of coupled partial-integro-differential equations (1), one for each
species with the size preference function (4) being the integral kernel. The equations are of the first order
in mass (i.e. hyperbolic) in which case shocks could be formed in the solutions. However the integral kernel
smooths out any discontinuities and the equations can be solved effectively and accurately using a standard
semi-implicit upwind finite-difference scheme for solving PDEs (Press et al., 1992). The McKendrick-von
Foerster PDE (1) is discretised by calculating g(m,m∗) and µ(m) explicitly and making the time update
implicit, to yield:

N i+1
w −N i

w

∆t
+
giwN

i+1
w − giw−1N

i+1
w−1

∆mw
= −µi

wN
i+1
w , (G.1)

where i denotes the time step, and w the grid index on the mass axis (i, w ∈ ℵ+). First order approximations
have been used for both the time and mass derivatives. The discretisation in mass is known as the upwind
approximation since the derivative is calculated from w and w − 1, which is possible since the growth
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function is non-negative. It is further noted that the ∂m approximation is semi-implicit since densities at
time step i+ 1 are used. Equation (G.1) may be written as:

N i+1
w−1

(
− ∆t

∆ww
giw−1

)
︸ ︷︷ ︸

Aw

+N i+1
w

(
1 +

∆t

∆ww
giw +∆tµi

w

)
︸ ︷︷ ︸

Bw

= N i
w︸︷︷︸

Cw

, (G.2)

which allows us to write an explicit solution for the density spectrum at the i+ 1 time step:

N i+1
w =

Cw −AwN
i+1
w−1

Bw
, (G.3)

which can be solved iteratively since N i+1
1 is given by the boundary condition. The flux in the boundary

g(m0,m∗)N(m0, t) is equal to the reproduction flux of new recruits R (11) such that gi0N
i+1
0 = R, which

yields: A1 = 0, and C1 = N i
1 +

∆t
∆m1

R.
This semi-implicit upwind scheme is very stable but diffusive. The third order QUICK (Quadratic

Upwind Interpolation for Convective Kinematics) scheme along with the techniques by Zijlema (1996),
which prevents overshooting problems introduced by the QUICKmethod, were used to check that numerical
diffusion poses no problem for ∆t = 0.02 years, and a mw mass grid with 200 logarithmically evenly
distributed points. To ensure stability the Courant condition (i.e. Press et al. (1992)):

|giw|∆t
∆mw

≤ 1, (G.4)

is prudent to fulfill. The essence of the criterion is that ∆t should be small enough not to allow individuals
to skip any mass cells mw during their growth trajectory.

The grid mw spans the offspring size m0 to 85 kg to include maturation sizes up to the order of 20 kg.
The grid for the background spectrum ends at mcut, and the lower limit should be low enough to ensure
food items for the smallest individuals in the functional species, i.e. 3 decades lower than m0. Identical
∆mw is used for the background and species spectra to ease computations in the overlap [m0; mcut].

To save computational time the ODEs for the background spectrum (15) are solved analytically. The
solution at time t0 +∆t for the semi-chemostatic equation is:

NR(m, t0 +∆t) = K(m)−
(
K(m)−NR(m, t0)

)
e−[r0m

p−1+µp(m)]∆t, (G.5)

where K(m) = r0m
p−1κm−λ

r0mp−1+µp(m)
is the effective carrying capacity at resource size m.
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