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Abstract

A simple size-structured dynamic population model focusing on the higher trophic
levels of marine ecosystems is presented. The model encapsulates a high degree of
ecological realism in its construction since it is based on a description of individual-
level physiology, and it is denoted simple since only one trait, the ultimate body
weight w∞, is used to characterise a species.

The key component in the model is an individual-level bioenergetic growth model
that allocates the acquired energy from size-dependent food intake into somatic
growth, maintenance, and reproduction. The environment of an individual is com-
pletely determined by the spectra of all species and a background spectrum that
provides resources to smaller individuals. From the environment the food intake
is calculated, and from this the mortality and reproduction of the individuals are
obtained.

Smaller species can reach the size of maturation solely on the background re-
sources, whereas larger species need larger food items as i.e. the smaller species to
reach maturation and thus sustain their populations. This mechanism, denoted the
trophic ladder, is shown to make coexistence possible in the setting of a completely
mixed environment where everybody is capable of eating everybody if they are of a
suitable size.

A framework is provided that allows the model to be used for size-structured
food webs. All species have preferences in [0; 1] to other species and the background
spectrum. The preferences times the size-selection function, that individuals use for
prey selection, correspond to interaction strengths in classical unstructured food
webs. It is shown that both the food web structure and the preference strengths are
important for coexistence.

Coexistence is moreover demonstrated using a third mechanism denoted switch-
ing, where individuals constantly switch their diet to the species that provides the
largest amount of suitable food items.





Resumé

En simpel størrelsesstruktureret dynamisk populationsmodel, der fokuserer p̊a de
øvre trofiske niveauer i marine økosystemer, præsenteres. Modellen udviser en høj
grad af økologisk realisme i dens udformning, da den er baseret p̊a individers fysi-
ologi, og betegnes simpel, da kun ét karaktertræk, den højst opn̊aelige individvægt
w∞, bruges til at karakterisere en art.

Hovedkomponenten i modellen er en individbaseret bioenergetisk vækstmod-
el, der allokerer den optagede energi fra størrelsesafhængigt fødeindtag til soma-
tisk vækst, maintenance, og reproduktion. Miljøet, som et individ befinder sig i,
er komplet beskrevet af alle arters spektre og et baggrundsspektrum, der forsyner
de mindste individer med ressourcer. Fra miljøet beregnes fødeindtag, og fra dette
bestemmes individernes dødelighed og reproduktion.

Mindre arter kan n̊a gydemodenhedsstørrelsen alene p̊a baggrundsressourcer,
hvorimod store arter kræver større fødeemner, som f.eks. de mindre arter, for at n̊a
gydemodenhedsstørrelsen og derved opretholde deres populationer. Denne mekanis-
me, der betegnes en trofisk stige, muliggør sameksistens i et fuldstændigt blandet
miljø, hvor alle kan spise alle, hvis blot de har en passende størrelse.

Modellen kan bruges til beskrivelse af størrelsesstrukturerede food webs. Alle
arter har præferencer i [0; 1] til andre arter og baggrundsspektret. Præferencerne
multipliceret med størrelsesselektionsfunktionen, som individerne bruger til byt-
tedyrsudvælgelse, svarer til interaktionstyrker i klassiske ikke-strukturerede food
webs. Det vises, at b̊ade strukturen og præferencestørrelserne i et food web er vigtige
for sameksistens.

Sameksistens er desuden demonstreret med en tredje mekanisme kaldet switch-
ing, hvor individer konstant skifter deres fødeindtag til den art, der tilbyder den
største mængde passende fødeemner.
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1
Introduction

This chapter contains the formal introduction to the thesis. The objectives of the
thesis is stated followed by an outline of the structure of the report.

1.1 Objectives

The objective of this thesis is to locate mechanisms that enables species coexistence
in a size-structured model of marine ecosystems. The ecosystem model should be
based on the model formulation by Andersen (2005) where coexistence has not been
demonstrated.

1.2 Thesis Outline

Chapter 2 is the scientific introduction to this thesis. Inhere an introduction to size-
structured models is given along with an introduction to why such models encapsu-
lates much more ecological realism than their unstructured counterparts in aquatic
environments. In size-structured models the population of a species is described by a
density spectrum that describes the composition of the different sized individuals in
the species population. In the chapter the Partial Differential Equation (PDE) that
links individual-level processes of growth, mortality, and reproduction to the popu-
lations dynamics is derived. One of the advantages of the size-structured models is
that the population dynamics emerge from the individual-level processes why the
parameters in the model are naturally assessed since assessment of individual-level
processes is more easy than assessment of population-level processes. The concept
of the community spectrum is also introduced, which is the spectrum consisting of
all individuals across all species.

The simple size-structured model that is later used to study coexistence is de-
rived in chapter 3. This model is based on the formulation by Andersen (2005),
but all parts of the model are more elaborately derived and some parts are modi-
fied. The derived model is denoted simple since only one trait, the ultimate body
weight w∞, is used to characterise a species. A bioenergetic growth model is derived
that allocates the acquired energy from food intake into somatic growth, mainte-
nance, and reproduction. The growth model is the key component of the ecosystem
model since it determines the growth trajectory of the individuals. Mortality is
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2 1: Introduction

implemented as predation mortality from size-dependent food intake, starvation
mortality if acquired energy is insufficient, and a background mortality that covers
other sources of mortality and makes sure that the largest individuals are exposed
to a mortality rate. The egg-stage is not modelled explicitly, but egg mortality is
included when the reproduction effort of the matured individuals is routed into pro-
duction of new recruits. Size-dependent food intake are realised with a size-selection
function that enables a predator to eat of primarily smaller individuals with some
selection width. Due to the size-dependent intake suitable food items are needed
for the smallest individuals, and to solve this problem a background spectrum is
included. The background spectrum represents the lower half of the community
spectrum as i.e. (zoo)plankton, and the spectra of the species represent the upper
half of the community spectrum. The details of how the resources are modelled
are also treated in the chapter. The environment that an individual experiences
is completely determined by all species spectra and the background spectrum from
which the food intake is found, which then returns the experienced mortality and
the reproduction of all matured individuals.

Chapter 4 treats the numerical setup that is needed to solve a PDE for each
species along with a series of ODEs that describe the dynamics of the background
resources. In the chapter convergence tests are carried out to find the number of
required grid points in the species spectrum resolution along with the minimum
required step size in the time dimension.

In chapter 5 the model from chapter 3 is examined using just a single species.
First an analytical solution is found for the species spectrum in a reduced steady-
state version of the full model. The distribution of different w∞ species in the
community spectrum is also found. This is followed by a numerical investigation
using just a single species in the complete model. This is done to gain an under-
standing of the dynamics present in the model before advancing to multi-species
studies.

A first mechanism for multi-species coexistence is located in chapter 6. Larger
species need smaller species to acquire enough energy in the larger size stages to
reach the size of maturation. Thus the mechanism enables coexistence since larger
species need smaller species as a trophic ladder. This mechanism allows species
coexistence in a completely mixed environment setting where everybody is capable
of eating everybody if they are of a suitable size.

The structure of a food web configuration naturally also plays a role for species
coexistence, and in chapter 7 the model from chapter 3 is generalised to be used
as a framework for size-structured food webs. The framework allows preferences
in [0; 1] to both other species and the background resources. The preferences are
different from interactions strengths in classical food web theory since the interaction
strength in the size-structured framework is the preference times the size-selection
function that is a function of prey and predator sizes. In the chapter it is shown
that both the structure and the preference strengths are important for coexistence.

Chapter 8 provides the discussion of the main results along with suggestions for
future research. Chapter 9 contains the conclusion, which rounds off the thesis.

1.3 Errata

Before print an error was discovered. Many figures print the unit of κ to be [g/m3]
instead of the correct unit of [g1+λ/m3].
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2
Structured Population Models

Why should we use the more complex structured population models instead of the
simpler unstructured counterparts? This question is answered in this chapter to
motivate the need for the model presented in chapter 3. A discussion on the outline
of the structured models is also given. Following this the conservation equation for
the structured systems is derived. Finally a brief introduction to the concept of a
community spectrum is given. This concept is needed in chapter 3 when resources
are introduced to the model.

2.1 Motivation for Structured Population Models

In unstructured population models such as i.e. Lotka-Volterra models (Lotka (1925)
and Volterra (1926)) the populations are modelled as numbers, concentrations or
biomasses. When species in such models are coupled in i.e. consumer-resource re-
lationships then intake by the consumer of the resource immediately appear as an
extra abundance or biomass of the consumer, and since intake are proportional to
the abundance or biomass then this has the effect that the consumer population has
instantaneously increased its population. Thus intake is immediately transformed
into a larger population in unstructured models. In real life this is definitely not
the case since reproduction is not an instantaneous process.

However, on a larger time-scale this might not be a problem in a modelling
approach if the offspring will have diets comparable to the parents. Lion offspring
are i.e. fed by the adults. However, in e.g. aquatic communities fish offspring must
first go through an egg-stage where they suffer from a high mortality. Then they
start their life with a diet very different from their parents and continue to change
diet composition till they reach the adult stage where they will finally have the
same diet as its parents. The diet composition is mainly determined through a size-
dependent consumer-resource interaction. Thus for i.e. fish it is a bad approximation
that the intake can be directly transformed into an increase of the population since
there is a time-delay from the time of intake by the adult fish till it effectively causes
an increase in the adult fish population. This process might take several seasons
whereas the lion cub will have the same net effect on predation through its parents
close to its birth.

The time-delay is not the most important difference between the two cases. More
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4 2: Structured Population Models

notable is the very different life-histories. The lion cub is born and is being fed and
protected by the parents, which clearly means that the age of the lion has a smaller
effect on its mortality and diet composition. For fish this is very different. First
they suffer from a high egg mortality, secondly they hatch at a very small size where
they are vulnerably to both predation and other death causes. Thirdly they grow
in size, and change their diet and potential enemies. They actually grow to become
their own enemy. Fish may grow from the mg regime to the kg regime, which is
six orders of magnitude! Notable is also that a female fish may produce several
millions of eggs throughout its life, but that only two have to survive to sustain the
population.

The size of individuals has implications beyond determining the trophic posi-
tion, since it plays a large role in determining the type and strength of ecological
processes that occur within a community. Most life-history processes such as food
selection, foraging rates, growth, maturation, reproduction and mortality are func-
tions of body weight. Peters (1983), Calder III (1984), Schmidt-Nielsen (1984), and
McMahon & Bonner (1983) give details on allometric scaling relations and Werner
& Gilliam (1984), Sebens (1987), and Ebenman & Persson (1988) provides theory
on size dependent growth and interactions. The metabolic theory (Brown et al.
(2004)∗) and Dynamical Energy Budgets (DEB) frameworks are new approaches
that provide theoretical frameworks for allometric scaling relations.

Complex life-histories as the one outlined for fish clearly requires a more elab-
orate modelling framework to incorporate realism – or at least to check that the
unstructured modelling approach is sufficient.

The immediate solution to this problem is to introduce stage-structured models
and model the discrete jumps between states (i.e. juveniles and adults). In the
continuous model regime, which is the model regime considered in this thesis, the
most simple method would be to employ Delay Differential Equation (DDE) models
which can take into account i.e. the time required for maturation. An introduction
to both of these methods may be found in Tuljaparker & Caswell (1996).

Instead of modelling the population dynamics directly we may take another
approach where we start out by modelling the life-history of the individuals. Figure
2.1 shows a class of identical individuals (super-individuals) that are born at time
step t0 with size w0. As time elapses they grow in size and decrease in numbers
due to mortality. At some size they reach maturity and may start producing new
recruits – and finally they have all disappeared because of mortality near some
maximum size w∞, which is the maximum size the individual can obtain. This
discrete problem may easily be made continuous by making infinitesimal time steps
and including a continuous range of super-individuals. With this approach we may
include size-dependent processes in addition to the inclusion of the time-delay.

This approach is more intuitive than e.g. the DDE approach since we do not have
to know how to model the population dynamics explicitly. Instead we can make
models based on the individuals’ physiology and life-history parameters, which are
also easier to measure. This along with their size-structured interactions will then
return the population dynamics. This kind of models are known as Physiologically
Structured Population (PSP) models or merely size-structured models and they are
the basis of the thesis at hand.

Figure 2.2 illustrates how we move from examining a class of super-individuals

∗Marquet et al. (2005) provides a nice review including a show-case for the importance of size
in especially aquatic environments.
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Section 2.1: Motivation for Structured Population Models 5i(w)
ww0 wwmat

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
Figure 2.1: A class of identical individuals (super-individuals) at different time steps. Along
the x-axis we have body size (i.e. weight) and the y-axis shows abundances (numbers/volume).
Individuals enter the spectrum at size w0, become reproductive (mature) at wmat, and may
obtain the asymptotic maximum size w∞. Note that the time-steps should not necessarily be
interpreted as being equally sampled since we do not expect a constant growth rate throughout
the life of the individuals.

to a more general class consisting of all individuals within a species. Each species i
is modelled with a continuous density spectrum ni(w, t) which contains the density
(numbers per size per volume) of the species composition at time t in regards to
body size w – that is: the density spectrum is a size-distribution consisting of in-
finitely many super-individuals. The dynamics within this spectrum is controlled by
growth and mortality functions which again are dependent of interactions with other
species. So, the super-individuals are described with individual-level functions and
the population dynamics emerges from this. This means that the model is parame-
terised with individual-level parameters which are assessable. Thus we are moving
away from the abstraction of unstructured models that are difficult to parameterise,
to more concrete models where the parameters are more easily assessed.

So, super-individuals may grow in size, die off and have the option of reproducing
if they have matured and have enough energy. Hatching mortality may be included
by inferring a mortality on the transfer of the reproduction into w0 sized recruits in
the left-hand side of the spectrum. The figure furthermore shows that the species is
cannibalistic with some size selection, which could as well be some size-dependent
interaction with another species. This clearly illustrates that size-structured models
encapsulates a lot of realism when time-delays and size-dependent processes are
important. In nature super-individuals naturally do not exist, but should merely
be considered as the average of the individual diversity.

The size w of the super-individuals may be length, volume, mass, age etc. How-
ever age is not very appropriate in an aquatic system since the physical size more
or less determines the trophic position; so age is not a good variable for describing
the physiological state. In the models considered in this thesis weight is selected as
the physiological variable since i.e. metabolic requirements are easily measured in
terms of weight. However, length could also be used since it is possible to define
functions within a species that create a one-to-one map between weight and length.
The symbol w is used for weight instead of m for mass since there is tradition for
this in the literature of theoretical biology and fisheries research.

The articles de Roos & Persson (2001) and de Roos et al. (2003a) give a more
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6 2: Structured Population Models

w0 wwmatReproduction
Cannibalistic intake /mortalitywprey wpred

log(ni(w,t))
log(w)

Figure 2.2: Spectrum (numbers/weight per volume) of one species with two outlined super-
individuals – a prey and a predator of weights wprey and wpred, These act in a predator-prey
relationship, where the predator has a food selection function (red curve). In this case the
species feeds upon itself (cannibalism), but it is easy to imagine how this predation could be
inflicted on another species’ spectrum. A reproductional flux of new individuals (recruits) of
size w0 is produced by individuals that has passed the size of maturation wmat. The axes are
in logarithmic scale, which proves more illustrative when plotting natural size spectra.

in-depth introduction to why size-structured models are important along with more
detailed references to experimental results. However, this introduction should have
underlined the most important reasons for employing a more detailed modelling
framework in aquatic systems: size matters for species that grow six orders in
magnitude throughout their life since their enemies and feeding items are determined
primarily by their size. We model individual-level processes and obtain population-
level dynamics. An analogy may be drawn to statistical physics where atom level
processes are described and thermodynamical descriptions emerge.

2.2 Outline of Structured Population Models

The first age-structured model by McKendrick (1926) was published almost at the
same time as the unstructured counterparts by Lotka (1925) and Volterra (1926).
McKendrick (1926) introduced the explicit Partial Differential Equation (PDE) con-
tinuous age-structured model in an example of epidemics, and von Foerster (1959)
rediscovered the same PDE when describing the age-structure of a cellular popu-
lation. These works are generalised by Sinko & Streifer (1967), which present a
one-species model that can be used to model both the size- and age-structure of a
population.

These models do not explicitly consider the individuals’ interactions with re-
sources and predators. Most probably since they were limited to consider analytical
solutions of highly simplified – and somewhat biologically uninteresting – one-species
versions. As indicated in the discussion of size-dependent life-history attributes in
the last section these interactions are clearly important, and studies of them have
been enabled with the introduction of computers and numerical techniques. The
Physiologically Structured Population (PSP) models by Metz & Diekmann (1986)
(compilation of lecture notes on PSP models) and de Roos et al. (1992) were appar-
ently the first to include the size-dependent interactions in the continuous regime
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Section 2.2: Outline of Structured Population Models 7

with the aid of the Escalator Boxcar Train (EBT) numerical technique (de Roos
(1988)) for solving the required PDE. A nice text-book examination can be found
in de Roos (1996). In the PSP modelling notation there is a distinction between the
old size-structured models and the new PSP models, and the former are called a
subclass of PSP (e.g. de Roos et al. (2003a)). In this thesis I will however not distin-
guish between the notions size-structured and PSP since the models are structurally
equivalent.

As indicated in the previous section and by considering figure 2.1 and 2.2 the
dynamics of the size spectrum is definitely influenced by each individual’s growth,
mortality, and reproduction. This is essentially the functions needed to describe the
evolution of each individual’s state – or i-state to use the terminology set forward
in Metz & Diekmann (1986) and de Roos (1996). In the models examined in this
thesis it is assumed that only one state variable, namely the weight, is needed to
distinguish super-individuals from each other within each species. In the model
all individuals with the same size (super-individuals) are assumed to have identical
behaviour.

At present unstructured population models are used in dynamic food webs;
however inclusion of some size-specific parameters can be included by using the
formulation by Yodzis & Innes (1992) where the parameters are more easily linked
to real species parameters. The studies by the de Roos and Persson groups only
consider one species size-structured and describes i.e. resources with unstructured
models. This thesis will extend the pioneering work of de Roos and Persson and
model more interacting species using a size-structured model (chapter 3), which is
used to formulate size-structured food webs (cf. chapter 7).

Together with the i-states the environment (E-state) naturally plays an im-
portant role for the population dynamics. The E-state captures quantities that
influence the behaviour of each individual. For instance the available food density,
predator density, temperature, salinity etc. So it is important to point out that the
E-state can be a function of may variables; E(ϕ(w), pi(t), T, S, . . .).

The i- and E-states give the resulting population dynamics via their interactions.
The population state (p-state) can in size-structured models easily be described
by the density function ni(w, t) over the i-state space. In the considered model
the density function is a function of time and weight. Before proceeding with the
description of the dynamics we will dwell on the basics of the density function for a
while.

Figure 2.3 shows the size spectrum of a general species i∗. The distribution of
individuals at different weights w at time t are described by the density function
ni(w, t), which has dimensions number of individuals per mass per volume†. The
number of individuals per volume in the size range [w1; w2] is thus:

ℵi,[w1;w2](t) =

∫ w2

w1

ni(w, t) dw (2.1)

One of the most important relationships is of course the relation to species
biomass. Unstructured models typically use abundance or biomass as the currency

∗It should be noted that i subscripts used in this thesis indicate ith specie, and not the individual
i-state.

†Readers with a physical background may be well suited in density formulations from quantum
mechanics, where electron densities are the key to all system property calculations in Density
Functional Theory (Kohn (1999)).
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w0 wwmatw1 w2Reproduction
GrowthMortalitygi(w,E)i(w,E)Ri,tot(w,E)

log(ni(w,t))
log(w)

Figure 2.3: The density function of specie i over the individual state variable w. Individuals
move up in the size hierarchy via growth, may leave the density spectrum due to mortality, and
reproduce after having matured at a given size.

for population modelling. The total biomass per volume of species i in size range
[w1; w2] at time t is calculated as:

Bi(t) =

∫ w2

w1

ni(w, t)w dw (2.2)

The i-state of each individual is controlled by its growth rate gi(w,E) and its
mortality rate µi(w,E). Production of recruits is a function of each individual’s
reproduction rate per individual per volume, R̃i(w,E). All three functions are
naturally dependent on both the i-state variable w and the current E-state. Working
with density functions is quite common in engineering and physics, and it may be
used to obtain total properties for the species as for example the total reproduction
rate (number of recruits per volume per time):

Ri,tot(t) =

∫ w∞

w0

R̃i(w,E)ni(w, t) dw =

∫ w∞

wmat

R̃i(w,E)ni(w, t) dw (2.3)

Recruits are being produced at a minimum species size w0
∗ and if they do not

die they will grow asymptotically towards the size w∞ (w ∈ [w0; w∞[). Individuals
mature at size wmat, and may contribute to the total spawning till their death; the
possibility of shrinking in size is treated in section 3.2.3. The point of maturation
wmat does not have to be a step function, but can be a smooth function over an
interval (only the first integral in (2.3) is then valid). It should be noted that the
model does not exclude the possibility of modelling species with determinate growth
(that is no body growth after maturation) since these may included by making the
[wmat; w∞[ region very small by making the growth rate go to zero after maturation.

With this short introduction enough notions should be available to derive the
equation describing the dynamics of the p-states in the next section.

2.3 Derivation of the Spectrum Dynamics PDE

To model the dynamics of the size spectrum (the p-state) considered in the previous
section we need a differential equation describing the dynamics. This must be a PDE

∗i subscripts on wb, wmat, and w∞ are omitted for notational simplicity.
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Section 2.3: Derivation of the Spectrum Dynamics PDE 9

since we want to examine the evolution in both time t and individual body size w.

Figure 2.4 shows the density spectrum of a species i, and the inset is used to
derive the PDE. The environmental state may e.g. in a simple case be thought of as
the total spectrum of species for consumption (including cannibalism) and predators
that will predate on species i. That the environment is a function of time naturally
has the effect that the growth, mortality, and reproduction become time dependent.
More info on the E-state in the model of this thesis is given in section 3.1.log(ni(w,t))

log(w)w0 wwmat
ni(w,t)w

Figure 2.4: Density spectrum with inset that shows a small interval of ∆w that is used to
derive the PDE describing the dynamics of the p-state.

When looking at a small interval of ∆w in the density spectrum, as shown in
figure 2.4, the density may be changed in three ways: k1 by individuals growing
into the interval, k2 by individuals growing out of the interval, and k3 by in-
dividuals dying and hence leaving the density spectrum. This naturally requires
that gi(w,E)∆t≪ ∆w since the argument fails if individuals can pass the selected
interval without residing in it at any time step. Fulfilling this requirement is not
problematic since ∆t and ∆w always can be selected to do so. The flux of individuals
in and out of the selected region in a time step ∆t is:

k1 gi(w − 1

2
∆w,E)ni(w − 1

2
∆w, t) (2.4a)

k2 − gi(w +
1

2
∆w,E)ni(w +

1

2
∆w, t) (2.4b)k3 − µi(w,E)ni(w, t)∆w (2.4c)

For the last contribution we have used that ∆w is very small and that ni(w, t)∆w
gives the total number of individuals per volume within ∆w at time t. If we use
this principle again we may find the number of individuals in ∆w at a later time
t+∆t as ni(w, t+∆t)∆w. By assuming that the fluxes in (2.4) are constant during
a small time step ∆t and setting the fluxes multiplied with ∆t up as a conservation
equation we get:

ni(w, t+∆t)∆w − ni(w, t)∆w = gi(w − 1

2
∆w,E)ni(w − 1

2
∆w, t)∆t

− gi(w +
1

2
∆w,E)ni(w +

1

2
∆w, t)∆t

− µi(w,E)ni(w, t)∆w∆t ⇔
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10 2: Structured Population Models

ni(w, t+∆t)− ni(w, t)

∆t
= −µi(w,E)ni(w, t)

+
gi(w − 1

2∆w,E)ni(w − 1
2∆w, t)− gi(w + 1

2∆w,E)ni(w + 1
2∆w, t)

∆w

By remembering the definitions for derivatives and letting ∆t → 0 and ∆w → 0
while fulfilling gi(w,E)∆t ≪ ∆w we get the PDE describing the dynamics of the
p-state:

∂

∂t
ni(w, t) +

∂

∂w

(
gi(w,E)ni(w, t)

)
= −µi(w,E)ni(w, t) (2.5)

where the first term describes time evolution of the density spectrum ni(w, t) and
the second term the advancement in the spectrum of the super individuals via the
growth function gi(w,E). The term on the right-hand side is a sink term, which
takes into account that parts of the super-individuals may leave the spectrum due
to mortality µi(w,E).

2.3.1 General Comments on the PDE

Equation (2.5) describes the dynamics of the p-state. The equation is known as the
McKendrick-von Foerster equation in mathematical biology because of the appar-
ently independent discoveries by McKendrick (1926) and von Foerster (1959). Both
these papers present an age-structured equivalent of (2.5) (cf. their equations (49)
and (24), respectively).

As previously stated we need functions for the growth, mortality, and reproduc-
tion to describe all i-states. The first two are explicitly stated in (2.5), and the
reproduction should be included as a boundary condition:

Ri,tot(t) = gi(w0, E)ni(w0, t) =

∫ w∞

w0

R̃i(w,E)ni(w, t) dw (2.6)

where the boundary condition gi(w0, E)ni(w0, t) (numbers per volume per time)
naturally should be the number of recruits per volume per time as indicated in
figure 2.3.

To study the effect of having individuals with differing growth trajectories in-
stead of super-individuals a higher order term could be added to the left-hand side
of (2.5). Such an investigation will however not be carried out in this thesis.

2.4 The Community Spectrum

In this section we will change focus. Instead of looking at the size distribution of
individuals within a species we will now look at the summation of all species’ size
spectra. This we will denote the community spectrum, and in the following we will
discuss that it obeys the relation:

Nc(w) = κw−λ (2.7)

where κ is the magnitude of the spectrum and λ the slope of the spectrum in a
loglog plot (cf. figure 2.5).

The concept of a size spectrum was introduced by Sheldon & Parsons (1967)
to represent the particular matter composition in the sea. Sheldon et al. (1972)
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Figure 2.5: Examples of the the community spectrum given by (2.7) in (a) normal plot, and
(b) logarithmic plot. Green: λ = 1, blue: λ = 2.05, red: λ = 3, κ = 1 for all except the
dashed where κ = 0.5. From these plots it cannot be seen that values of λ < 2 is not realistic
as argued in the text.

conjectured that the total mass within logarithmically equally sized groups – as
the presented density function – are constant over the size range from bacteria to
whales. Silvert & Platt (1980) attributed this to the biological interpretation that
the mass of the predators equals the mass of its prey.

By applying (2.2) we find that the biomass per volume within logarithmically
equally sized groups at a given size w in the community spectrum is:

Bcs(w) =

∫ aw

w

Nc(w)w dw =

∫ aw

w

κw1−λ dw ∝ κw2−λ (2.8)

From this we may argue that λ = 2 to ensure Bcs(w) = const which was con-
jectured by Sheldon et al. (1972). We may relax the interpretation of Silvert &
Platt (1980) to predator population biomass may not grow larger than their prey
population biomass, which gives λ ≥ 2 as the plausible range for the slope.

Kerr (1974) used a discrete model of predator-prey interactions between size
groups and derived λ = 2.2. A continuous study by Platt & Denman (1977) yielded
λ = 2.22. This study did however ignore losses due to mortality, but in Silvert
& Platt (1980) this was included in a McKendrick-von Foerster formulation and
simplifications led them to λ ∈ [1.97; 2.01]. Camacho & Solé (2001) also used a
McKendrick-von Foerster approach and arrived at λ ≈ 2 mainly due to predation.
The metabolic theory of ecology approach (Brown et al. (2004)) has also been
applied to give λ = 2∗ (Brown & Gillooly (2003)). Finally Andersen & Beyer (2006)
considers a simplified steady-state version of the dynamic model in this thesis and
arrives at λ = 2.05. That the biomass abundance should be slightly declining as
a function of weight w is also supported by Jennings & Mackinson (2003). Unlike
oceanic systems the community spectrum of lakes have lumps and gaps (Havlicek
& Carpenter (2001)). The reader is referred to Kerr & Dickie (2001) for in-depth
treatment of the biomass spectrum in aquatic environments.

In the model of this thesis the concept of the community spectrum will be used
to employ background resources in the model. From the discussions in the previous

∗Remember that an abundance spectrum should be transferred into a density spectrum by
division of dw. Hence their value of ∝ w−1 becomes ∝ w−2.
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12 2: Structured Population Models

section we know that species are modelled from a given recruit size w0, but we have
also discussed that feeding is a size-dependent process and clearly the preferred food
items will be smaller than the recruits. To give the smaller individuals suitable food
items resources will be added as in any modelling approach. In a model of everything
the resources will be the primary production (light and nutrients). However, we will
use the lower part of the community spectrum as background resources. Section 3.5
goes into the details of this modelling approach.
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3
A Simple Size-Structured
Population Model

In this chapter we will derive the size-structured model that is later used to study
coexistence in. We denote this model a simple size-structured population model
since we will only use one parameter to characterise a species. The parameter that
characterises a species will be the ultimate weight w∞ a species may obtain. In
nature several species may obtain identical w∞, which means that all such species
are lumped into just one species.

In the chapter we will first simplify the environment of the individuals to be com-
pletely determined by the background resources and the spectra of all the species.
From this we retrieve a Partial Differential Equation (PDE) for the population dy-
namics which requires functions for the growth, reproduction, and mortality of the
individuals. These three functions are thus derived in the three succeeding sections.

After sections 3.1–3.4 we have determined the functions required for the individ-
uals and the PDE to describe the dynamics of the species. In section 3.5 we turn
the attention to the resources in the background spectrum and describe how these
are modelled.

In the chapter typical values for all parameters in the model are determined.
These are either assumed equal for all species or derived as being functions of the
ultimate size w∞. Thus we end up with the required simple model of an aquatic
ecosystem where only w∞ is used to separate the species. However, the model may
easily be extended so that multiple traits are used to describe a species.

The chapter is rounded off with tables 3.2–3.5 which summarises the most im-
portant equations along with typical parameter values. In chapter 7 the model from
this chapter will be extended to be used in a size-structured food web framework.

3.1 Outline of the Model

In the following we will apply Ockham’s razor to reduce the complexity of the conser-
vation equation (2.5) that describes the dynamics of the species’ density functions.
By doing so we end up with a PDE for the p-state in the model where the environ-
ment is completely determined by the spectra of the background resources and the
individual species.
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14 3: A Simple Size-Structured Population Model

The environmental state, the E-state, gives a description of the environment that
the super-individuals are located in. In natural systems the E-state is naturally a
many-variable function dependent on the available food ϕ(w), density of predators
pi(t), temperature T , and salinity S: E(ϕ(w), pi(t), T, S, . . .). In the model used in
this thesis we model the environment as being the other species and the background
resources: E(ϕ(w), pi(t), T, S, . . .) = E(nb(w, t), ni(w, t)), where nb(w, t) is the den-
sity spectrum of the background resources (more details in section 3.5.1) and ni(w, t)
the spectra of the different species spectra. From all species’ individuals and the
background resources the available food and the predators for any super-individual
are obtained. This means that the environment consists of all living organisms in
the model whereas no external factors are explicitly modelled – these may however
be implicitly modelled in parts in other functions of the model.

The total spectrum, the E-state in the model, is the density spectrum of all
species and the background spectrum:

E(·) ≡ N(w, t) = nb(w, t) +
∑
i

ni(w, t) (3.1)

The background spectrum will not be introduced until section 3.5, but it repre-
sent the resources of the model. The modelled species are the higher trophic species,
and the background represents species such as (zoo)plankton. The total spectrum
should of course be the same as the community spectrum (section 2.4). Hence the
modelled species represent the upper half of the community and the background
spectrum the lower half.

The size w in the model will be in units of weight: [w] =g. In the thesis we
will use the intuitive, but mathematically incorrect, notion of E(nb(w, t), ni(w, t)) =
N(w, t) to obtain notational simplifications. It seems intuitive that the E-state is
somehow given by the total spectrum, but of course incorrect in a strict mathemat-
ical sense since some super-individuals may be independent of each other. With
the new notion for the E-state the conservation equation (2.5) that describes the
dynamical behaviour becomes:

∂

∂t
ni(w, t) +

∂

∂w

(
gi(w,N)ni(w, t)

)
= −µi(w,N)ni(w, t) (3.2)

From the previous chapter we recall that the reproduction is used as a boundary
condition: Ri,tot(t) = gi(w0, N)n(w0, t). Note that since N(w, t) is a function of
time then growth gi(w,N) and mortality µi(w,N) in (3.2) are also functions of
time t. Since they are only implicitly functions of time via the population densities
ni(w, t) we do not include time t in the arguments. From (3.2) we thus see that
we need to determine functions for the growth, reproduction, and mortality of the
individuals. This is the topic of the three following sections.

3.2 Individual Growth from a Bioenergetic Model

The main purpose of this section is to derive a bioenergetic model in the form
of a growth function that describes the super-individuals advancement in the size
spectrum. However, before deriving the growth function we need to know two
important properties in the system:
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Section 3.2: Individual Growth from a Bioenergetic Model 15

1. How much food is available for the individual? A species may obtain its diet
from the background resources and other species. A model based on size-
dependent selection of food items and a search volume that scales with body
size is derived to obtain the amount of food an individual encounters in a
given environment.

2. How satiated is the individual? The intake of an individual will not continue
to increase with an increasing amount of available food. The concept of a
feeding level is employed to obtain a measure on the degree of satiation of the
individual.

After having derived models for these properties a bioenergetic model for the
growth of the individual is derived. We end up with a model that determines
how much energy that should be put into maintenance of basal metabolic require-
ments, body growth, and reproduction. The allocation to these three energetic
requirements is naturally a function of the actual food intake and satiation of the
individual.

The reproduction is thus tightly connected to the structure of the derived bioen-
ergetic model, and in section 3.3 the implementation of reproduction is discussed in
detail.

3.2.1 Encountered Suitable Food by an Individual

The individuals have metabolic requirements and must grow from recruits into
adults that can reproduce. Hence they must have a food consumption from the
surrounding environment, which is the total spectrum N(w, t) as previously dis-
cussed. In this chapter we assume a completely mixed environment setting meaning
that an individual encounters all species and background resources simultaneously.
In chapter 7 we will go into the details of handling different preferences towards
different species.

In this section we will determine the amount of suitable food an individual of
size wp encounters per unit time as the product of its search volume vi(wp) (volume
per time) and the available concentration of suitable food items ϕi(wp, N):

F (wp, N) = vi(wp)ϕi(wp, N) (3.3)

To calculate the encountered food per time the available concentration of suitable
food will be found in the next section. The problem of the search volume is treated
subsequently.

Food Selection and Available Food from Foraging

The individuals naturally cannot eat everything in the environment, so we introduce
a selection function that gives a percentage of how likely a predator of weight wp

consumes a prey of size w:

si(w,wp) = exp

[
− ln2

(
w

βiwp

)
/(2σ2

i )

]
(3.4)

This log-normal function is adopted from the North Sea model by Andersen & Ursin
(1977) and is based on investigations of cod and dab (Ursin (1973)) and copepods
(Ursin (1974)).
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Figure 3.1: Examples of the prey se-
lection function for a predator wp =
104. Blue curves β = 0.01, red
β = 0.1. Solid curves σ = 1, dashed
curves σ = 0.5.

The preferred size of prey is βiwp (βi: prey-predator ratio), and σi is a measure
of the width of the selection function. The size selection function is illustrated in
figure 3.1. σi is probably the most important species dependent parameter in (3.4)
since the smaller a σi the more specialised is the species. The typical values that will
be used are β = 0.01 and σ = 1 which seems to be okay for at least cod and dab.
Jennings et al. (2002) goes beyond diet analyses and find a mean prey-predator
ratio of β = 0.0092 using stable isotope analyses.

In a completely mixed environment where all individuals in N(w, t) are vulnera-
ble to predation, the total concentration of available and suitable food items (mass
per volume) to a predator of size wp is:

ϕi(wp, N) =

∫
N(w, t)wsi(w,wp) dw (3.5)

To include spatial heterogeneity and different preferences towards different species
for the diet of an individual this function naturally has to be generalised. However,
to avoid too many technicalities in this chapter this is postponed to chapter 7 where
the model from the current chapter is applied to a size-structured food web descrip-
tion.

The role of specialisation vs. generalisation (thin vs. wide σi) will not be treated
in this thesis. Simple studies may however easily be made by requiring a fixed value
of the integral of si(w,wp), so that i.e. generalists will have a wide selection function
with low magnitude and specialists a thin selection function with a high magnitude.

Search Volume

We will now derive a model for the search volume per time for a cruising predator.
Naturally, a predator does not forage continuously, but in the following we will
parameterise the encounter process to obtain a simple allometric scaling relation of
body weight for the search volume.

As illustrated in figure 3.2 the search volume per time is the product of the
foraging speed νi(w) and the cross sectional area of the reactive field of the fish.
We will assume a circular reactive field with radius ri(w), which gives us the search
volume per time:

vi(w) = πr2i (w)νi(w) (3.6)
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r
Figure 3.2: The search volume of a
fish is the product of its velocity and
and the cross sectional area of its re-
active field. The reactive field is as-
sumed circular with radius r.

Table 3.1: Collection of search volume parameters for five different sizes of fish. Table values
derived using ξ = 0.2.

w∞ Length Cross sec. area Cross sec. radii Avg. speed Search vol.

0.01 g 1.10 cm 1.22 cm2 0.62 cm 5.91 cm/s 7.21 cm3/s
0.1 g 2.26 cm 5.98 cm2 1.38 cm 7.98 cm/s 47.7 cm3/s
1 g 4.64 cm 29.3 cm2 3.05 cm 10.8 cm/s 314.9 cm3/s
1 kg 40.2 cm 0.344m2 33.1 cm 26.4 cm/s 0.0908m3/s
15 kg 93.7 cm 2.23m2 84.2 cm 37.6 cm/s 0.837m3/s

We will find that ri(w) and ν(w) can be expressed as allometric scaling relations
of body weight w. Thus the search volume for an individual of weight w can be
expressed as:

vi(w) = γiw
qi (3.7)

We expect that the reactive field is related to the square of the body length
l, and the velocity to be described by an allometric function of body weight w.
Ware (1978) calculates that the reactive field area scales with l2.2, and from a
typical energy budget he finds the optimal cruising speed to be 15.1w0.136 cm/s and
optimal foraging speed 20.3w0.132 cm/s (w in units of g). It is noted that most fish
do not grow isometrically throughout their life (w ̸= ϖl3), but with w ∝ lξl3, where
ξ typically is 0.1− 0.4. In this thesis the typical value ξ = 0.2 is used, which means
that the reactive field scales with w0.69. By combining the results we find that a
typical value for qi is q = 0.82.

In the body length domain A(l) = l2.2 cm2 gives reasonable cross-sectional radii
of 3.05 cm for 4.64 cm (1 g) fish and 33.1 cm for 40.2 cm (1 kg) fish. We know that
the cross-sectional area is given by A(w) = acw

0.69 cm2, and from Peters (1983) we
get l = 4.64w1/(3+ξ) (cm), which yields ac = 4.642.2 cm2 g−0.69.

The prefactor γi for the search volume thus becomes 20.3 · 4.642.2 cm3/s = 1.9 ·
104 m3/year. However, predators naturally do not forage continuously, so selecting

for the typical parameters of γ = 104 m3g
−q
/ year and q = 0.82 seems acceptable.

These values give the search volume parameters listed in table 3.1.
Ware (1978) states that the optimal foraging speed is 0.4–1.0 times the maximum

sustainable swimming speed. Videler & Wardle (1991) find that the maximum
sustainable swimming speed is given by νms(L) = 0.15+2.4Lm/s where L is in units
of metres. Remembering that we reduced γ with 1/1.9 we find that the swimming
speeds from table 3.1 corresponds to 0.3–0.6 times νms. Thus comparison with
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the data in Videler & Wardle (1991) gives confidence that we have estimated the
parameters to the correct order of magnitude.

It is noted that the relation for the search volume in (3.7) may not be very good
for smaller species (below 10 cm) according to Ware (1978). However the smallest
individuals considered in the species spectrum has a weight of 0.01 g (1.10 cm) and
thus a search volume of 7.21 cm3/s, which does not seem an extremely large search
volume for this individual compared to its reactive radius of 0.62 cm.

We derived this model for a cruising predator, and it is quite intuitive as a first
hand description for pelagic and demersal species that do actually search for food.
However, the approach can also be used for i.e. benthic species who use a sit-and-
wait ambush strategy, where we may regard the search volume of the predator as
the amount of food that flows through its reaction field. It is likely that both the
prefactor and the scaling will differ from the derived values. However, we would
still expect q to be positive, which means that we also do capture some realism for
sit-and-wait predators.

As will become evident in section 5.2 the scaling of the search volume is im-
portant for the dynamics of the model. This means that the model is sensitive in
regards to the γ parameter.

In nature foraging speed may be a function of the environment νi(w,N) since
an individual may i.e. have different speeds at different food concentrations (Ware
(1978)). This would appear has an environmental dependence in the γ(N) prefactor
in (3.7).

Further studies of the model should link the bioenergetics of the growth model
more tightly with the search volume concept to enable studies of tradeoffs when
species have different feeding strategies. In this case a sit-and-wait predator can
have a i.e. a lower γ, but then also the advantage of a lower metabolism. It might
however also be so that different strategies have different functional responses so that
different variants of the feeding level concepts have to be implemented. Lessons
learned from the more general problem of optimal foraging theory could also be
incorporated (see e.g. Mangel & Clark (1986)).

3.2.2 Feeding Level

When foraging there is an upper level of how much food a predator can process.
This is due to satiation and/or handling limitations, and is normally incorporated
with a functional response.

In this thesis a Holling type II functional response is used (Holling (1959a,
1959b)). The total effect of satiation and limitation is denoted satiation, and the
degree of satiation is the feeding level:

fi(wp, N) =
F (wp, N)

F (wp, N) + Ii,max(wp)
=

vi(wp)ϕi(wp, N)

vi(wp)ϕi(wp, N) + Ii,max(wp)
(3.8)

which varies between 0 and 1. Ii,max is the upper level of food that can be ingested
per unit of time. By multiplying fi(wp) with Ii,max it is recognised that we get a
Holling type II functional response. The maximum intake per time is given by:

Ii,max(w) = hiw
ki (3.9)

An argument for this scaling of the maximum intake is given in the next section
when discussing the metabolic requirements of an organism.
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Diet of an Individual

To study the actual diet of individuals in a model run we may calculate e.g. the
food intake per unit time from the background:

φb,i(wp) = fi(wp, N)Imax(wp)
ϕb,i(wp, N)

ϕi(wp, N)
(3.10)

which is simply the amount of eaten food per time, fi(wp)Imax, multiplied with the
ratio of the food available from the background and the total amount of available
food.

3.2.3 Growth Function

In this section we will consider how the i-state is actually modelled. An individual
can grow up in the spectrum by a growth function, which is the topic of this section,
and it may leave the spectrum due to mortality, which is treated in section 3.4.
As mentioned earlier one of the most important advantages of the size-structured
models compared with the unstructured counterparts is that they are constructed
upon a description of individual behaviour. Instead of setting constraints on the
population behaviour from the top the bottom-up behaviour determines the upper
level population dynamics. This is an advantage because individual level parameters
are more easily assessed. The most important function for the individual behaviour
is the growth function, which is derived in this section.

In general fish cannot shrink in body size, but the lipid and gametes mass may
vary. This would of course decrease the weight w, so that the fish would have to
move backwards in the density spectrum. Numerically this is not very convenient
(cf. section 4.1), and not necessary since it may be avoided while keeping realism by
organising the model in a smart way. Loss of lipid masses will occur when the fish is
starving, which means that the lack of food can be converted into a corresponding
mortality rate as argued in section 3.4.2. Loss of mass due to reproduction may
be treated by not including gamete mass in the weight w that is used for the i-
state variable – this is partly the topic of this section, but treated more thoroughly
in section 3.3. This means that the weight w used as the i-state represents the
irreversible mass or somatic mass (∼the structural biomass) of the super-individuals.

The reader may be interested in going through Ursin (1967), which contains
many theoretical and empirical considerations for fish growth models. Likewise
Beyer (1989) may be a good starting point for theory on recruitment.

This section is divided into three subsections. In the first a general growth model
is derived from first principles. In the second we dwell on the role of activity, which
is important for fish since a substantial part of their energy budget is allocated
to activity. In the third and final subsection we adopt the derived general growth
model to the modelling framework of this thesis and determine typical values for
the parameters in the model so that it can be expressed with just w∞ as the species
dependent parameter.

Derivation of a General Growth Model

Pütter (1920) was the first to introduce a mathematical framework to describe the
growth of animals in terms that are very similar to the growth models used today.
In the 1920 paper a model is proposed where the growth is the difference between
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what comes in and what goes out. The intake is related to a surface process, and the
decomposition of existing mass is dependent on body weight. In the more detailed
and modern derivation of this section we will end up at a result very similar to the
early result of Pütter (1920).

The following derivation of a growth model is a generalised version inspired by
the work of West et al. (2001) and includes solutions to the critique put forward by
e.g. Makarieva et al. (2004)∗; excluding the temperature dependence introduced in
Gillooly et al. (2002), which we are not interested in. Another theoretical framework
that may be used for derivation of a growth model is Dynamical Energy Budgets
(DEB) (Nisbet et al. (2000) and Kooijman (2000)).

Definitions of metabolic rate differs and are often very vague (cf. e.g. Schmidt-
Nielsen (1983) and Kooijman (2000)). The metabolic rate is the energy flux required
to fire all chemical reactions in an organism. Since this is difficult to operate with
in practice the metabolic rate is often defined to be proportional or equivalent to
respiration rate, which again is proportional to O2 uptake or CO2 uptake for plants
(Zeuthen (1953)). Metabolism is proportional to respiration since combustion

Respiration of glucose:
C6H12O6 + 6O2 →
6CO2 + 6H2O+ E

of food (proteins, carbon hydrates, and lipids) release almost the same energy per
O2 molecule (cf. Schmidt-Nielsen (1983)). This bookkeeping is however more com-
plicated since all excess assimilated food is stored as lipids regardless of its type,
which requires energy and hence more O2. However, on longer time scales of the
individuals the metabolic rate can be taken to be proportional to the respiration
rate (West et al. (2004)).

The assimilated food intake must also be proportional to the respiration, since
the assimilated food contains the material part for the respiration process to take
place. Hence we have the following useful relation:

Metabolic rate ∝ Resp. rate ∝ Assim. food rate ∝ O2 uptake rate (3.11)

The total metabolic rate B for an organism must then clearly be the sum of
all O2 demanding processes, which allow us to set up the following energy balance
equation:

B = Bmain +Bgrowth +Brepro +Bheat +Bosmosis +Bactivity (3.12)

The maintenance term Bmain contains all energy requirements needed to sus-
tain life in the body as i.e. continuous cell replacement. Bgrowth is the energy
allocated for growth, and Brepro is the energy allocated to reproduction. Since fish
are poikilothermic organisms (their internal temperature follows the environment)
we have Bheat = 0. The energy required to sustain a body salinity lower than
the surroundings can also be neglected (Bosmosis = 0) since this contribution of no
more than 5-10% of B often is difficult to measure separately and can be included
in Bmain as a maintenance requirement (Andersen (2006)). However, euryhaline
species (species living in waters with high variation in salinity) may spend up to
∼ 30% of B on osmosis (Kooijman (2000)), which means that further considerations
should be carried out for these species. The activity term Bactivity is important for
fish since their metabolism varies a lot depending on its activity level. However to

∗Makarieva et al. (2004) also claim another energy balance equation, which is not consistent
with (3.12) (and hence incorrect). Many growth models are based on this incorrect energy balance
equation, which origin cannot be tracked to a common source, but is still found in the literature.
The problem with the balance equation is that it does not recognise that it takes O2 to construct
new biomass.
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avoid complexity we will comment on the role of Bactivity later in this section and
for now just accept that it is included in Bmain. This yields a condensed balance
equation consisting of just the maintenance, growth, and reproduction term, which
can be expressed in a more detailed form:

B ≃ Bmain +Bgrowth +Brepro

≃ NcBm + εEc
dNc

dt
+ ψ(·)εEg

dNg

dt
(3.13)

where it is assumed that maintenance, Bmain ≃ NcBm, is proportional to the
numbers of cells Nc in the body.∗ The growth term is described as the change in
number of cell times the energy εEc needed to create a cell; the ε pre-factor is needed
since the energy required to build a cell depends on the quality of the food. Lastly
the reproduction term is included exactly as the growth term with the exception
that the index g now refers to gametes† and the ψ(·) function is a Heaviside selection
function that changes from 0 to 1 when the individual has matured; more details
on this ontogenetic shift is found later in this section. In the condensed balance
equation we treat all cells as average cells to avoid dealing with different kinds of
tissue in the body.

Equation (3.13) can be expressed in terms of body weight w by recognising
that Nc = w/wc where wc is the weight of a single cell, and that the weight of
produced gametes wg∆Ng in a given season ∆t is proportional to the body weight
wg∆Ng = ρ′w (Blueweiss et al. (1978)) – or equivalently mass investment in gametes
per season wg∆Ng/∆t = ρw. Since we are already considering average cells we may
assume wg = ηwc and Eg = η/aEc, where a is some efficiency factor, which take
into account that gametes primarily are formed from stored lipid reserves. These
variable transformations leads to a general growth equation:

B =
Bm

wc
w +

εEc

wc

dw

dt
+ ψ(·)εEcρ

awc
w

=

(
Bm

wc
+ ψ(·)εEcρ

awc

)
w +

εEc

wc

dw

dt
⇔ (3.14)

dw

dt
=

wc

εEc
B −

(
Bm

εEc
+ ψ(·)ρ

a

)
w (3.15)

Empirical data (cf. e.g. Peters (1983), Calder III (1984), Schmidt-Nielsen (1984),
and McMahon & Bonner (1983)) agree that the metabolic rate can be described
by the allometric power law B = B0w

k, where the exponent k typically is approxi-
mately 0.75 (known as Kleiber’s law due to Kleiber (1947)) and the B0 (energy ×
mass−k/time) constant for each taxon (∼ group of similar animals). For fish the
exponent is more difficult to determine, and a wider range of exponents around this
value have been measured (Schmidt-Nielsen (1984)). Theoretical derivations of the
scaling exponent k have been carried out. Apparently the first derivation was by

∗I will not go further into this assumption. Later we will see that the derivation leads to a von
Bertalanffy growth equation which have been shown to describe measured growth curves to a high
enough precision. See e.g. the fits in West et al. (2001).

†In the model we do not distinguish between males and females even though a larger amount
of energy is put into reproduction by females. Males often also have extra energy expenses upon
maturation by making themselves attractive to females, performing parental care and by being
territorial (Roff (1983)). In this thesis I will not initiate construction of the still missing models
that take into account sexual difference, but instead model the two sexes as average individuals.
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McMahon (1973) who derived that the maximal power from a contracting muscle
is proportional to w3/4. West et al. (1997) derived the 3/4 power by looking at
how the energy may be delivered to the body through a fractal network of branch-
ing tubes; later in West et al. (1999) they argue that evolution has optimised the
body to this most efficient scaling of the metabolic rate. Banavar et al. (1999) and
Banavar et al. (2002a) generalise this work and argues that deviations from the
optimal 3/4 power is due to inefficiency or compensating physiological mechanisms
in the organism. Darveau et al. (2002) points out that the 3/4 value only applies
for the basal and not the maximal metabolic rate, which has a higher scaling power,
and tries to explain it with a multiple-cause model which adds on to the theory of
the limiting factor in the transport network that supply the cells with energy. This
study is not very strong in a theoretical sense, and is also later criticised by the
groups of West and Banavar, but it does however point out the need for a better
understanding of the metabolic rate under different conditions. There is a long
tradition to apply scaling laws in biology and it may just be so that the different
scalings of the metabolic rate at different activity levels cannot be described by a
power law. However, the power law do capture enough realism to be used in the
general growth model in this thesis, and we may thus write (3.15) as:

dw

dt
=
wcB0

εEc
wk −

(
Bm

εEc
+ ψ(·)ρ

a

)
w (3.16)

Without reproduction (ψ(·) = 0) we see that for w → wr we have obtained the
form of the general von Bertalanffy growth equation which was initially employed as
a fitting function to empirical growth curves (von Bertalanffy (1934)). In fisheries
research the von Bertalanffy growth equation has been successfully employed with
k = 2/3 and r = 1 (von Bertalanffy (1957)). Von Bertalanffy saw the first term as
energy intake, which he argued should be a surface process (w2/3), and the second
term as a maintenance term that should scale with the volume (w). As illustrated
by Banavar et al. (2002b) the actual value of k for data fits is not very critical.

Some models state that k ≈ r based on empirical investigations (i.e. Lester et al.
(2004)), and this has the effect that the maximal size w∞ an individual may obtain
becomes poorly defined; found by setting dw

dt = 0 and solving for w = w∞. k ≈ r is
not readily justified theoretically since individuals may grow indefinitely, which is
obviously not true, and is most probably due to confusion in measured properties
and the earlier mentioned problems with incorrect definitions of metabolism. Often
only the two terms intake and maintenance from a traditional von Bertalanffy
growth curve are used for a growth function. This has the disadvantage that an
individual will aim for a certain w∞ throughout its life which is not in agreement
with empirics, which find that growth is slowed down upon maturation (i.e. Roff
(1983)). This often turns into a general critique of using measures of w∞, but as
seen in later in figure 3.3 the model in this thesis changes growth curve (and hence
resulting w∞) upon maturation as desired.

The Activity Term

The activity term in (3.12) is important for fish since it may constitute up to 80%
of the total metabolic rate (Andersen (2006)) depending on the individuals level of
activity. The required energy rate for swimming may be approximated by the drag
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force times the travelled distance per unit of time:

Bactivity = FDu =
1

2
CDϱu

3A ∝ bCDϱw
3·0.134w2/3 ∝ bCDϱw

1.07 (3.17)

where CD is the drag coefficient, ϱ the density of water, u swimming velocity, and A
the realised projected area of the fish. As we have seen in section 3.2.1 the velocity
may be assumed proportional to w0.134. We may also write the area as w2/3 and
then introduce b to get the units right.

As (3.17) shows the activity term in (3.12) scales approximately with body
weight w. Since we are not interested in explicit modelling of activity we will include
activity as an average energy rate, which can be included in the maintenance term
in (3.12) since both terms have the same scaling.

The model at hand may be advanced by linking the search volume in (3.7)
explicitly to metabolic requirements. Higher search volume implies larger velocity
that requires more energy, which then enables trade-off studies to be made.

Adopting the General Growth Model to this Thesis

To apply (3.16) as a growth model in the thesis at hand we use relation (3.11),
which yields that B0w

k (energy/time) is proportional with food intake Ii,max(w) =
hiw

ki (mass/time) and disregard that food may have differing quality (ε = 1).
As argued in section 3.2.1 the actual food intake is the feeding level times the
intake at abundant food conditions. By multiplying the food intake with some
assimilation efficiency αi we have wcB0/Ecw

k ∼ αifi(w,N)hiw
ki . Similarly we

may write Bm/Ec ∼ δi, and ρ = ϱi. The efficiency factor a may be approximated
with the assimilation efficiency αi. These transformations give a somatic growth
equation for species i:

gi(w,N) = gi,in(w)− gi,main(w)− gi,repro(w)

= αifi(w,N)hiw
k − δiw

r − ψi(w)
ϱi
αi
w (3.18)

where we have now specified that the reproduction selection function is dependent
on the somatic weight w. For generality we have also allowed an allometric scaling of
δiw; however, we derived the model for r = 1 and will only carry out investigations
with this value. αi is assimilation efficiency (dimensionless), hi maximum food
intake scaling (mass1−k/time), δi maintenance requirement (mass1−r/time), and
ϱi investment in reproduction (1/time). The first term represents energy from
food intake, second term maintenance, and the third term is the requirements for
producing gametes (all in mass/time units). (1−αi)fi(w,N)hiw

k is the energy that
is lost from i.e. body heat due to activity, and the energy that is excreted.

From table 1 in West et al. (2001) we find for a cod hi = 21 g1−k/year, but
in this thesis a typical value of h = 25 g1−k/year is used. West et al. (2001) also
indirectly determines δ = 0.11 g1−r/year. In the literature assimilation efficiencies
in the order of 0.70–0.95 are often found for fish. However, these often results from
laboratory tests. Andersen & Riis-Vestergaard (2004) find food conversion efficiency
for saithe in the wild to be 0.43–0.50 where lab measurements yield 0.51–0.76. Since
the assimilation efficiency in this thesis dictates a mass conversion efficiency and not
an energy efficiency a typical value of α = 0.3 seems reasonable. In more realistic
studies α could be a function of the actual food source since i.e. herbivores have a
lower efficiency than carnivores because herbivores have to transfer organic material
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Figure 3.3: Growth pattern for an individual with w∞ = 20 kg (solid), and its genetically
modified non-reproducing (ψi(w) = 0) counterpart (dashed). The non-reproducing individual
grow faster, but at decreasing rate, compared to the reproducing individual after maturation.
That the non-reproducing individual should continue to grow 1000 times larger is of course not
realistic since some other mechanism will prohibit this.

into animal tissue. A typical value of ϱ = 0.15 /year is compatible with the values of
0.1–0.2 that is often used (i.e. Andersen & Ursin (1977)). Estimating typical values
for αi, hi, δi, and ϱi is difficult since the literature does not provide exhaustive
amounts of data.

Figure 8.3 in Kooijman (2000) shows body temperature corrected Bertalanffy
growth rates for many different animals. The figure basically states that the pref-
actor αh is constant for a given temperature, and at 25◦ C it is αh ≈ 10 g1−k/year.
From the estimated parameters the value αh = 0.3 · 25 g1−k/year = 7.5 g1−k/year
seems okay since a typical marine environment definitely holds individuals at a lower
body temperature.

For the r scaling employed on the maintenance term we may argue that k ̸= r
since we then otherwise would expect individuals that was genetically modified
not to reproduce to grow indefinitely at a constant rate. Such experiments causes
individuals to change growth patterns and grow faster to a larger size (Andersen
(2006)). Such a pattern is also seen in the growth model at hand (r = 1) as
indicated in figure 3.3 where we see that an individual changes its growth curve
after maturation. The new curve has a slower growth compared to the case where
the fish has been genetically modified not to reproduce. In contrary to the k = r case
we see that the growth rate do decay for large w∞ in the case of no reproduction,
which seems intuitively correct.

We note that the growth function may become negative if the intake is smaller
than the expenses for maintenance and reproduction. As it will be made clear in the
next section energy will only be spent on reproduction if intake minus maintenance
is positive, and if intake is lower than maintenance requirements (i.e. for low feeding
level) a starvation mortality is employed as described in section 3.4.2.

The maximal size an individual may obtain at abundant food conditions (∀w :
f(w) = 1) is given by:

gi(w∞) = 0 = αihiw
k
∞ − δiw

r
∞ − ψi(w∞)

ϱi
αi
w∞ (3.19)

w∞ =

(
αihi

δi + ϱi/αi

) 1
1−k

for r = 1 (3.20)

From this we see that we cannot use all of the above mentioned typical values for
αi, hi, δi, and ϱi since we then cannot get differing w∞ for different species. Due to
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Kleiber’s law (cf. the discussion above) we may assume hi = h species independent.
Assimilation efficiency is also assumed species independent αi = α. At a first glance
it might also seems alright to assume that all species spend the same percentage
of their body mass on reproduction; ϱi = ϱ. The last parameter δi may then be
determined by rearranging (3.19) to obtain:

gi(w,N) = αifi(w,N)hiw
k −

(
αihiw

k−r
∞ − ϱi

αi
w1−r

∞

)
wr − ψi(w)

ϱi
αi
w (3.21)

where we note that δi = αihiw
k−r
∞ − ϱi

αi
w1−r

∞ becomes negative for large w∞. Ac-

tually this happens at w∞ = wδ,++ = (ϱi/(α
2
ihi))

1
k−1 , which then will represent an

upper size on viable values of w∞.
If we alternatively assume δi = δ species independent we may write the growth

function as:

gi(w,N) = αifi(w,N)hiw
k − δiw

r − ψi(w)
(
αihiw

k−1
∞ − δiw

r−1
∞
)
w (3.22)

which also imposes an upper value: w∞ = wϱ,++ = (δi/(αihi))
1

k−r .
How do these formulations differ? The δ(w∞) (3.21) formulation postulates

that all species use the same percentage of body mass for reproduction and that
increasing efficiency of maintenance is what allows larger species to obtain a larger
w∞. Alternatively the ϱ(w∞) (3.22) formulation assumes that all species use the
same body mass percentage for maintenance and that larger species are obtained
by lowering the reproduction effort.

The δ(w∞) assumption seems rather weak since both growing to a larger size
(avoiding predation) and having lower maintenance requirements are positive effects;
i.e. there is no trade-off. Now, the trade-off do exist in the ϱ(w∞) formulation
since species will have to pay the cost of lower reproduction to obtain a larger size.
Figure 3.4 shows the required δ(w∞) and ϱ(w∞) values in the two formulations. We
immediately see that the ϱ(w∞) formulation allows studies of species over a larger
w∞ range, but also the weakness of this formulation. As w∞ becomes smaller ϱ(w∞)
exceeds 1, which is only possible if the species spawn more than its own mass in a
season, which again only seems possible if it spawns several times in each season.

This discussion clearly shows that more research should be put into a general
growth equation. Maybe all parameters (αi, hi, δi, and ϱi) should somehow be
related to w∞. Larger fish like tuna may i.e. have a higher hi value since their large
body size and activity give them higher internal temperatures which might mean
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Figure 3.4: Plot of δ(w∞) and ϱ(w∞) in
(3.21) and (3.22) using the typical values
of α = 0.3, h = 25 g1−k/year, δ =
0.11 g1−r/year, and ϱ = 0.15 /year. The
ϱ(w∞) formulation allows studies of larger w∞
species, but the ϱ value goes above 1 for small
w∞ which is only possible for species that
spawn several times in one season.
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that their metabolic capability becomes higher like endotherms (∼ mammals). One
might also put an upper limit to how much a species can reproduce, but then a sink
term has to be introduced to the growth equation.

The weaknesses of the growth function pointed out in the above discussion imply
that caution should taken in interpretations of the upper limits w++ that is imposed
on maximal w∞ values. However, when the w++ values are approached the model
breaks down and this may correspond to a shift in life strategy as when e.g. moving
from fish to sharks; instead of i.e. aiming at many small eggs it becomes favourable
to go for fewer larger offspring, which can be protected and are more capable of
avoiding predation.

In this thesis the ϱ(w∞) formulation (3.22) of the growth function is selected
for the modelling studies. This formulation is from the discussion clearly more
realistic than the δ(w∞) (3.21) formulation, which requires reduction of maintenance
requirement to allow species with larger w∞.

3.3 Reproduction using the Bioenergetic Model

In this section we will use the bioenergetic model for the growth of the individuals
from section 3.2.3 to obtain an explicit function for reproduction, which is used as
the boundary condition in the PDE (3.2) describing the spectrum dynamics.

By using the method outlined in section 3.2.3 we do not have to add gametes
to the body weight w since we may use the mass rate ϱi

αi
w directly to calculate the

reproduction needed in the flux boundary condition as outlined in (2.6):

Ri,tot(t) = gi(w0)ni(w0, t) =
eiαi

w0

∫
gi,repro,eff (w

′)ni(w
′) dw′ (3.23)

where ei is the recruiting efficiency constant that sets the probability that recruits
survive up to size w0. Assimilation efficiency αi is also a prefactor since the re-
productive investment compared to body weight should be ϱiw (Blueweiss et al.
(1978)). The integral gives the invested mass/volume/time in gametes, and by di-
viding this with w0 we get the number of recruits/volume/time that should be used
as the boundary condition. Wootton (1979) indicates that we may employ an ap-
proximation where we use the same w0 for all species since the number of produced
eggs has a tendency towards linear scaling with body weight. Stochasticity in the
reproduction may be obtained by putting a stochastic variance on the reproductive
efficiency constant ei. We postpone determination of typical values for w0 and ei
to the proceeding section of the following treatment of reproduction.

The subscript eff is added to the growth function in (3.23) to indicate that the
effective reproductive growth function may differ from the ideal defined in (3.18)
since excess energy may not be available to allow ideal reproduction. The effective
reproductive growth-rate is defined by:

gi,repro,eff (w) = gi,repro(w)− gi,repro,miss(w) (3.24)

gi,repro,miss(w) = max
(
0 , gi,repro(w)− gi,repro,avail(w)

)
= max

(
0 , gi,repro(w)−max

(
0 , gi,in(w)− gi,main(w)

) )
This means that in shortage of energy (gi,repro(w) > gi,in(w) − gi,main(w)) the
available energy gi,repro,eff (w) is spend on reproduction. In shortage of energy the
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w
(w)1

wmat0.5 wmatxy Figure 3.5: The reproductive selec-
tion function ψi(w) is defined with a
Fermi-Dirac distribution. The width
of the passage is given by a constant
χi which is a function of x and y.

available energy is spent on reproduction, and nothing on growth. Maybe a trade-off
should be made in a later version of this model so that some energy is still routed
to growth.

In the simplest case the reproduction selection function ψi(w) is a Heaviside
step function that gives 1 for w ≥ wmat, but it may more realistically (and nice in
a numerical sense) be a probability function stating the probability that an indi-
vidual at size w has matured since the total biomass of a size-class will not enter
the Spawning Stock Biomass (SSB) simultaneously. The Fermi-Dirac probability
function gives the probability that a quantum state at energy level E is occupied
at a given temperature T . The Fermi energy EF is defined as the energy where the
probability is 1/2:

fF (E) =
1

1 + exp
(

E−EF

kBT

)
To represent ψi(w) we are interested in 1− fF (E), which gives:

ψi(w) =
1

1 + exp
(

wmat−w
χi

) (3.25)

where χi is a constant that sets the width of the passage from a non-reproducing
size to a fully reproducing size. It may be defined with the aid of the x and y
parameters in figure 3.5, and is given by:

χi =
1− x

ln
(

1
y − 1

)wmat (3.26)

Selecting x = 0.8 and y = 0.1 means that 10% has matured at 0.8wmat. This seems
reasonable and corresponds to a typical χ value of χ = 0.091.

To reduce the number of parameters in the model we link the size at matura-
tion (now understood as the size where the maturation probability is 0.5) with the
maximum size an individual may obtain:

wmat = ηiw∞ (3.27)

Actually the size at maturation should be determined from optimal life-history
theory (cf. i.e. Thygesen et al. (2005)), but this is out of the scope of this thesis. As
a typical value we use η = 1/8 which seems viable with the assumption of (3.27).
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The effective reproduction growth function gi,repro,eff (w) in (3.23) may also be
stated as the ideal mass rate ϱi

αi
w times an effective reproduction selection function

ψi,eff (w) given by:

ψi,eff (w) = ψi(w)−
αi

ϱiw
gi,repro,miss(w) (3.28)

This function may be used to simplify interpretation of numerical simulations.
In the model we are considering only fish exposing indeterminate growth – that

is fish that continue to grow after maturation. Determinate growth may however
also be included for species like salmon by causing complete extinction after first
reproduction.

Assessing Recruit Size w0 and Efficiency e

Assessing the the constants in (3.23) is difficult. Selecting for a high w0 is desirable
for the numerical simulations since the [w0;w∞[ span determines how many grid
points that is needed in the simulations. Contrary a low w0 is needed to include
dynamics of the small individuals. The latter is most important to include realism,
and hence the value w0 = 0.01 g is selected. Egg size varies from species to species,
but a typical size of wegg ≈ 0.5mg may be assumed (Wootton (1979)). To determine
a typical value for ei we have to assess how many of the eggs that will become recruits
at size w0. If we had used w0 = wegg the number of recruits (=eggs) in (3.23) would
have been w0/wegg = 20 times higher, which means that we have some inclusion of
mortality from the egg stage to the recruiting size w0 in (3.23).

To ultimately determine ei we will try and determine the fraction of individuals
that survives from wegg to w0. From Andersen & Beyer (2006) (cf. section 5.1)
we get that the density spectrum of a species scales with ni(w) ∝ w−k−a

i , where
k = 3/4 is the allometric scaling of metabolic requirements and a is a number
characterising the predation strength. This gives the fraction of survival from wegg

to w0: n(w0)/n(wegg) = (w0/wegg)
−k−a. If the survival probability from egg to

larvae stage is p then the typical value for e becomes:

e = p
n(w0)

n(wegg)

w0

wegg
= p

(
w0

wegg

)1−k−a

(3.29)

where we multiply with w0/wegg to account for the survival rate that is already
included in (3.23). The eggs are exposed to a mortality rate µ, which makes
us solve ṅ(wegg, t) = −µn(wegg, t) to obtain n(wegg, t) = n(wegg, 0) exp(−µt). If
the hatching time for the eggs is thatch then the survival probability will be p =
n(wegg, thatch)/n(wegg, 0) = exp(−µthatch). From section 3.4 we know that preda-
tion mortality scales with w−1/4, and from Andersen & Beyer (2006) we get the
proportionality factor αha (scaling of µ is 1/year). If we thus assume that size
dependent predation mortality is the main mortality source for eggs we can specify
(3.29) further:

e = exp(−αhathatchw−1/4
egg )

(
w0

wegg

)1−k−a

(3.30)

where we immediately recognise a, thatch, and wegg as the important and unknown
parameters. The value of e is very sensitive to the value of a that characterises the
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Figure 3.6: (a) Hatching time as a function of egg weight. (b) Plot of thatchw
−1/4
egg from

(3.30) where it is seen that the actual selection of a (thatch, wegg) pair plays a smaller role
for the survival probability. Temperature is more important for the survival probability. Data
obtained using a regression model from Pauly & Pullin (1988) that correlates egg diameter,
temperature, and hatching time. Weights are obtained by assuming spherical shape and a
density equivalent to water.

predation strength in the system. Larger values of a causes e to decline rapidly.
The e value also depends strongly on both wegg (positively) and thatch (negatively),
but these parameters are easier to assess. Figure 3.6(a) shows the typical relation-
ship between wegg and thatch. Since wegg and thatch have opposite effects on e we
may expect that how we choose the actual (thatch, wegg) pair plays a smaller role
compared to the chosen value of a. This is indeed the case as shown in figure 3.6(b),
which indicates that temperature on the other hand plays a key role.

To obtain a typical value of e we plot (3.30) in figure 3.7(a) for wegg = {0.5, 5}mg
and overestimated hatching times of thatch = {2, 4}weeks to include extra mortality
that is not included in the survival property. Actual values of a ∈ [0; 1.3] (Andersen
& Beyer (2006)) are difficult to determine, but a typical value of a ≈ 0.6 may be
a good guess (Andersen (2006)). From these considerations we may thus select the
typical value e = 0.1 for w0 = 0.01 g recruits from the plots in figure 3.7(a).

3.4 Mortality

In the previous section it was studied how individuals may grow to a larger size w
in the size spectrum. In the following a mortality model will be derived that makes
it possible for individuals to leave the spectrum.

An individual may die from size-dependent predation or from starvation when
food abundance is sparse. Other causes of mortality, e.g. diseases, are more diffi-
cult to assess and are therefore included in a non-dominating constant background
mortality term to ensure that mortality do occur for the largest individuals in the
model. This means that the mortality rate for species i super-individuals of size w
can be expressed as:

µi(w,N) =
∑
j

µp,j(w,N) + µi,s(w) + µi,0 (3.31)
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Figure 3.7: (a) The recruiting efficiency e as a function of a using typical values from table
3.5. e is plotted for two different egg sizes: wegg = 0.5mg (blue) and wegg = 5mg (red).
The solid plots show e for a hatching time of thatch = 2weeks, and the dashed plots a value
of thatch = 4weeks. It is expected that natural systems have a ≈ 0.6, which means that a
value of e = 0.1 may be a typical value for recruiting efficiency to w0 = 0.01 g in (3.23). (b)
Recruiting efficiency e as a function of recruiting size w0 (a = 0.6).

where µp,j(w,N) is predation mortality from species j for an individual of size w,
µi,s(w) a starvation mortality, and µi,0 the background mortality. It is noted that
cannibalism naturally is a special case of predation; µp,i(w,N) = 0 if cannibalism
is not included.

3.4.1 Predation Mortality

The size-dependent predation mortality rate from predator species j experienced by
an individual with size w is the probability of being consumed at a given time-step
by that species. This clearly means that the predation mortality is dependent on
the density of predators (∼ the environment N(w, t)).

Predation mortality rate may be calculated as the ratio of species j’s total food
intake of items with size w and the total amount of available food ϕj(wp, N) for
species j; cf. equation (3.5). The food intake of size w prey items by a predator of size
wp is the selection function times the feeding level times the optimally desired intake:
sj(w,wp)fj(wp, N)Ij,max(wp). The total intake is then sj(w,wp)fj(wp, N)Ij,max(wp)
multiplied with the predator density nj(wp) integrated over wp. The predation mor-
tality from species j for an individual of size w thus becomes:

µp,j(w,N) =

∫
sj(w,wp)fj(wp, N)Ij,max(wp)nj(wp)

ϕj(wp, N)
dwp (3.32a)

We may express Ij,max(wp) in terms of vj(wp), ϕj(wp, N), and fj(wp, N) via (3.8),
which gives us the computationally simpler expression for the predation mortality:

µp,j(w,N) =

∫
sj(w,wp) (1− fj(wp, N)) vj(wp)nj(wp) dwp (3.32b)

At a first glance this result might seem counterintuitive to the reader. Why
is predation mortality zero when fj(wp, N) = 1 (full feeding) and large when
fj(wp, N) = 0 (no feeding)? To understand this we take a look at the feeding
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level fj(wp, N) in (3.8). We note that the feeding level is an implementation of a
functional response of type II. First we see that the two extremes of fj(wp, N) = 0
and fj(wp, N) = 1 only can be reached asymptotically. When feeding level goes to
zero we effectively get a a type I functional response which means that the predation
mortality should indeed be proportional to the swept search volume by the preda-
tor times the size-selective function: µp,j(w,N) =

∫
sj(w,wp)vj(wp)nj(wp) dwp.

On the other hand when feeding level goes towards one it means that the opti-
mally desired intake Ij,max(wp) becomes very small compared to the available food
(vj(wp)ϕj(wp, N) ≫ Ij,max(wp)), and thus the mortality rate should indeed go to-
wards zero.

Peterson & Wroblewski (1984) found from theoretical justifications that the
mortality in the pelagic ecosystem scales with w−x, where x ∈ [0.1; 0.4]. One of the
assumptions in Peterson & Wroblewski (1984) is that mortality due to predation
is dominant, which is also consistent with the observed decrease of mortality for
increasing body size. We may assume that the density of predators has the scaling
of the community spectrum w−λ. Thus in an equilibrium situation (fj(wp, N) =
const ̸= 1) it is easily seen that (3.32b) scales with µp ∝

∫
v(w)Nc(w) dw ∝ wq−λ+1.

This yields −x = q − λ+ 1 ≈ 0.83− 2.05 + 1 = −0.22, which is in agreement with
Peterson & Wroblewski (1984). Typically size dependent predation mortality is
assumed to scale with w−1/4 if size dependent mortality is not modelled explicitly
as in this thesis.

From (3.31) it seems that species i has no effect in itself on the mortality imposed
by the predator species j. This is not true since it has an implicit effect on the
predation mortality since individuals may aim for a high growth rate to escape
mortality in a shorter time, and thus experience less mortality. In natural systems
it would then be more vulnerable to starvation during periods of limited resources
since it may spend less on building of lipid reserves, and it may also expose itself
to a larger predation risk in the search for food items; see e.g. Biro et al. (2005)
for inspiration. But by performing a trade off between risks there is an implicit
effect from the individual itself on the predation mortality. Such optimal strategies
will not be considered in this thesis, but can be incorporated in the model in a
natural way. The predation mortality may also be reduced if there is low spatial
connectivity between the prey and predator as illustrated in section 7.1 on network
structure.
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Figure 3.8: Plot of the typical size-dependent
predation mortality µp(w) = 1.92w−1/4 year−1

(prefactor from Peterson & Wroblewski (1984)),
and the constant background mortality µ0 =
0.1 year−1. It is noted that the predation mortal-
ity in the model is explicit, so that the predation
mortality is absent for the largest predators.
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32 3: A Simple Size-Structured Population Model

3.4.2 Starvation Mortality

Starvation mortality may occur when food abundance is sparse. Assessment of
starvation mortality is difficult, and no data is available for validation of a model.
However, an expression for starvation mortality is desired in the case that there is
no food available for a given large predator. Otherwise, in simulations, we would
have to wait for the background mortality to wipe out individuals that persist with
no food and no enemies; and this can take up a lot of computational time.

Starvation occur if the maintenance requirements exceed the intake so that
e(w) = gi,main(w) − gi,in(w) is a positive quantity of the missing energy per time.
We may assume that the time-scale before starvation death is inversely proportional
to the missing energy, and proportional to the energy reserves (mostly lipids). The
lipid masses (energy reserves) is a function of body weight, and as a first approx-
imation it may be assumed proportional to body weight: ϵw. Thus the time-scale
for starvation death is τs(w) = ϵw/e(w). The starvation rate can then be defined
to be µs(w) = τs(w)

−1, which yields:

µs,i(w) =

{
0 gi,in(w)− gi,main(w) ≥ 0

si
gi,main(w)−gi,in(w)

w gi,in(w)− gi,main(w) < 0
(3.33)

where si = 1/ϵ is a dimensionless constant. An evaluation of the range of the pre-
factor si is easily made. A typical value for ϵ in the 0.05−0.2 range seems reasonable,
which again means that si ∈ [5; 20]. As discussed above starvation mortality should
not play a significant role for the resulting total mortality in (3.31) so we select for
a low typical value of s = 5.

In e.g. Persson et al. (1998) (and later models by Persson and de Roos) both the
somatic and lipid mass of the individuals are modelled. When the lipid mass comes
below a certain percentage of the somatic mass this is converted to a starvation
mortality, which is inversely proportional to the lipid mass. An average effect of
this is achieved by the starvation mortality in (3.33). In the Persson et al. (1998)
model the starvation mortality goes to infinity when the lipid mass goes to zero.
The net effect of starvation is not that pronounced in (3.33) but in the intermediate
range the models are similar.

As mentioned earlier the starvation model is not validateable, and thus it can-
not be used to study systems where the results depends heavily on the starvation
mortality. States that have a strong dependence on starvation should hence be in-
terpreted with caution. However, we do not see an important effect of (3.33) in
simulations. Only if unrealistic initial conditions are used, where the simulation
is started in a state where many individuals have access to too few suitable food
items, then clearly the transient depends heavily on the starvation mortality. How-
ever, once the final state has been reached starvation will no longer play a key role
since individuals in the continuous model clearly will not grow into a state where
there is too little food. Such states will primarily occur if the system is disturbed.
One can therefore say that the predation mortality actually incorporates an indirect
effect of starvation mortality: if individuals cannot grow due to limited food then
they will not able to escape predation mortality, and thus be more vulnerable to
predation.

A more realistic starvation model may be obtained by taking into account that
matured individuals has a higher proportion of lipid masses in form of gonads,
which means that the denominator should be w + ψi(w)ϱiw. However, this would
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require modifications of the resulting reproduction and since we are not interested
in starvation dependent effects we avoid this complication.

3.4.3 Background Mortality

Causes of mortality different from predation and starvation is included in the back-
ground mortality. The background mortality is assumed constant and independent
of size. Inclusion of a background mortality thus makes sure that mortality indeed
do occur for the largest individuals in the model. A typical value of µ0 = 0.1 year−1

is used in the model (i.e. Andersen & Ursin (1977)).

3.5 Resource Supply from a Background Spectrum

This far we have described the individual growth, mortality, and reproduction.
We envisage that the food intake for growth and reproduction comes from other
species in the model, and that the species inflict predation mortality on each other.
However, since we are modelling the species from a given recruit size w0 and since
the food selection (3.4) is a size-dependent process, then clearly suitable food items
are missing for the smallest individuals in all species. To solve this we introduce the
concept of a background spectrum to provide resources for small individuals. The
first part of this section describes the concept of a background spectrum, and the
second goes into the details of how the dynamics of the spectrum is modelled.

3.5.1 The Background Spectrum

In addition to the different species densities ni(w, t) we need a background spectrum
to give the smaller individuals something to feed on as illustrated in figure 3.9.
We aim at examining coexistence at the higher trophic levels, which means that
we will not model the life-histories of small marine species/particles such as e.g.
(zoo)plankton. The background will act as the limiting resource as for instance in
the Rosenzweig-MacArthur model (Rosenzweig & MacArthur (1963)) – this means
that the density dependence is food limitation. Engineers and physicists may think
of the background spectrum as the energy input to the system, and loss of energy
in non-ideal food intake and reproduction may be regarded as sinks.

In section 2.4 we introduced the concept of a community spectrum as the spec-
trum of everything in the sea. Naturally this is the sum of all the higher trophic
species spectra modelled explicitly plus everything else as e.g. (zoo)plankton. The
total spectrum (section 3.1) was introduced exactly as this summation, and from
that discussion we know that the background spectrum represents the lower half of
the community spectrum, and the modelled higher trophic species the upper half.
We do not model the life histories of the species in the background spectrum since
we are describing the higher trophic levels. And if we were to model the life histo-
ries the model would get very complicated since we then would have to model e.g.
detritus and particles such as phosphorous. The steady-state or time average of the
background spectrum should be a subset of the community spectrum (2.7):

nb,ss(w) ≡ Nc(w)
∣∣
w≤wcut

= κw−λ , for w ≤ wcut (3.34)

Thus the background spectrum is the lower half of the community spectrum up to
a cut-off size wcut as depicted in figure 3.9. The cut-off is located above w0 = 0.01 g
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w0 wwpred
log(ni(w,t))

log(w)
log(nb(w,t))Predation intake wcut

Figure 3.9: The modelled individuals enter the spectrum at weight w0. A background spec-
trum nb(w, t) is introduced to give the smaller individuals items to feed on. The background
spectrum is actually the lower half of the community spectrum (section 2.4) and the modelled
species represent the upper half. Thus the background spectrum naturally should be cut-off
at some weight wcut since it should only provide resources to the system. The background
spectrum is the primary production (∼energy input) in the system.

since resources are present at the size-scale of the recruits. Ideally the background
spectrum should thus have a lower magnitude after w0 (i.e. a bend downwards) to
fulfill the concepts of the total- and the community spectrum. However, since we
are also clearly missing out some higher trophic species (i.e. large octopuses) this is
not important and will not change the qualitative results of the model.

As a default cut-off a value of wcut = 0.05 g is used in this thesis. Thus the
background spectrum represents all resources with a weight up to 0.05 g.

In the discussion in section 2.4 we discussed the value of λ. Andersen & Beyer
(2006) considers a simplified steady-state version of the dynamic model in this thesis
and arrives at λ = 2.05. This value of λ = 2.05 will be used as the slope for the
background spectrum in the simulations of this thesis. The magnitude κ of the
spectrum determines the resource abundance and thus the dynamic behaviour of
the system as described in section 5.2.3. In section 3.5.2 a realistic value of κ is
assessed.

The background spectrum is an elegant way of including multiple resources in
the model, which is essential in any realistic model of a marine ecosystem. In
aquatic environments the size-structured models have mainly been employed in
freshwater systems where fewer resources most commonly are present (Havlicek &
Carpenter (2001)). Here typically only one or two resources are modelled in a
manner consistent to the approach in the Rosenzweig-MacArthur model – see i.e.
de Roos et al. (1992), Claessen et al. (2000) and Persson et al. (2004). These models
tend to get complicated at just two resources since they have to model the attack
rate of the different resources independently (Persson et al. (2004)). This thesis
aims for a lower level of detail and attacks the problem of an unlimited number of
resources in a simple manner by employing the background spectrum.

In a simple case where the background is so abundant that the species cannot
bring its density down at any size range the spectrum may be considered constant,
and the total density of available food for a species i individual of size wp can then be
obtained analytically (cf. appendix A.2) if the background is extended throughout
the species spectrum (wcut → ∞). This naturally corresponds to the total food
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available from the community spectrum:

ϕi,c(wp) =

∫
Nc(w)wsi(w,wp) dw

=
√
2πκσβ2−λ

i exp

[
1

2
σ2
i (2− λ)2

]
w2−λ

p (3.35)

This result is used for steady-state considerations elsewhere in this thesis, and is
stated here instead of in section 2.4 since the concept of the size selection function
si(w,wp) had not been introduced at that stage. The case of a constant background
density can also be used when examining the dynamics of the model without the
influence of the background spectrum. Another density dependence (i.e. cannibal-
ism) then naturally has to be included to avoid having the biomass going towards
infinity. Such investigations are not carried out in this thesis.

3.5.2 Modelling the Background Spectrum

In this section we elaborate on how to model the background spectrum where it
should be noted that each size in the background spectrum represents densities for
different species, which means that the background spectrum is not modelled as
the species spectra. Instead each size (in practice size ranges) is modelled with a
population growth model.

The first step is naturally to employ the knowledge of the steady-state solution
nb,ss(w) (3.34) in the construction of a time-dependent function of the background
spectrum: nb(w, t). Since nb,ss(w) is the steady-state or the temporal average of
nb(w, t) we may assume that nb,ss(w) = κw−λ is the carrying capacity Kw = κw−λ

in a density dependent growth equation (i.e. logistic growth). This employs food
limitation which is the density dependence we are interested in.

The Ordinary Differential Equation (ODE) describing the dynamics of the back-
ground density spectrum at w is thus naturally given by the population growth rate
G(nb, w) minus the experienced mortality µb(w,N):

ṅb(w, t) = nb(w, t)
(
G(nb, w)− µb(w,N)

)
(3.36)

where the mortality is given in the previous section by (3.31). We will only in-
clude predation mortality from the species spectra ni(w, t). Including background
mortality would just be an effective re-scaling of regeneration rate and was only
included on the species to make sure that the largest individuals are exposed to
a mortality rate; this is clearly not needed on the density dependent resource. A
starvation mortality does not make any sense for the background spectrum as we
are not modelling its growth energetically.

In the following we will first elaborate on the form of the population growth
function G(nb, w). Secondly analytical solutions to (3.36) will be provided. These
are very useful since we have to solve (3.36) at many (+100) w grid points to obtain
a continuous background spectrum. In the last two sections we will determine the
parameters for regeneration rate and density magnitude for the background.

Details on Population Growth Rates: G(nb, w)

In the following three different functions for the population growth G(nb, w) are
presented. We will see that the functions have the same qualitative behaviour with
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36 3: A Simple Size-Structured Population Model

respect to studies of enrichment via the carrying capacity Kw = κw−λ. In the
succeeding section we will discuss the three models further and select one of them
for the studies in this thesis.

The most commonly used growth rate function is logistic growth (Verhulst
(1838)) that once plugged into (3.36) constitutes the Rosenzweig-MacArthur model
(3.37a) (Rosenzweig & MacArthur (1963)). The logistic growth does however not
obey the relation ∂nb

G|nb(w,t)=0 = 0, which states that density dependency should
go towards zero for a decreasing population. This is discussed by Getz (1998) who
agitate for more complex functions. The problem may however be circumvented in
a more simple manner by making a parabolic version of logistic growth as in (3.37b).
As it will become evident in section 5.2.3 there is however not any practical differ-
ence between the two functions; see also figure 3.11(a). In explicit forms the growth
functions appear as:

GRM (nb, w) = rw

(
1− nb(w, t)

Kw

)
(3.37a)

GP (nb, w) = rw

(
1− nb(w, t)

2

K2
w

)
(3.37b)

GSC(nb, w) = rw
1

nb(w, t)

(
Kw − nb(w, t)

)
(3.37c)

where rw is a scaling of the population regeneration rate, and Kw = nb,ss(w) =
κw−λ the carrying capacity for the background spectrum at w.

In the size-structured studies by the de Roos and Persson group a third growth
rate function denoted semi-chemostatic growth (3.37c) is used. This growth model is
fundamentally different and is supposed to represent resources that have a physical
and/or size refuge as indicated in figure 3.10 (cf. e.g. Persson et al. (1998)). It
also has a stabilising effect on the population dynamics compared to logistic growth
(de Roos et al. (1990) and section 5.2). This can be understood by rewriting (3.37c):

GSC(nb, w) = rw
Kw

nb(w, t)

(
1− nb(w, t)

Kw

)
(3.38)

By comparison with (3.36) we see that semi-chemostatic growth is identical with
logistic growth if the nb(w, t) pre-factor for G(nb, w) is changed to Kw. This gives
a very rapid regeneration of resource depletion as illustrated in figure 3.11(a).

Semi-chemostatic growth is often argued to model abiotic resources and the
logistic growth to model biotic resources. However, as argued above we may use it to
represent a resource that i.e. has a refuge. Based on the idea from HilleRisLambers
et al. (2006) we will now show that the three growth models considered in this thesis
even have the same qualitative behaviour. The zero isoclines (equilibrium solutions)

ArenaRessourceRefugeFlux=const(K-R) Density RDensity K Figure 3.10: Semi-chemostatic pop-
ulation growth represents the scenario
where the resource has a refuge that
through a flux will try to keep the arena
at the carrying capacity, which is equiv-
alent to the refuge density.
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for the growth models are found by solving (3.36) for ṅb(w, t) = 0:

G(nb, w) = µb(w,N) (3.39)

The zero isoclines may now be explicitly written by solving this expression for
nb(w, t) and inserting the three growth functions:

nb,RM (w, t) = Kw

(
1− µb(w,N)

rw

)
∨ nb,RM (w, t) = 0 (3.40)

nb,P (w, t) = Kw

√
1− µb(w,N)

rw
∨ nb,RM (w, t) = 0 (3.41)

nb,SC(w, t) = Kw
rw

rw + µb(w,N)
(3.42)

We thus see that the zero isoclines of the three growth models have the same pro-
portionality in regards to the carrying capacity Kw. The zero isoclines separate the
regions of phase space with effective negative and positive population growth rates;
that is the regions of resource extinction and survival. In modelling studies the pro-
ductivity or enrichment in form of the carrying capacity Kw is often the interesting
parameter to vary; i.e. when examining the paradox of enrichment (Rosenzweig
(1971)) and Intraguild Predation (IGP) (Holt & Polis (1997), Mylius et al. (2001)).
This means that we will get the same qualitative response with either one of the
three growth models. However, studies of the influence of regeneration rate rw may
differ as the regeneration times to identical mortality rates differ.

Analytical Solution of the Background ODE

Above three different growth functions were presented, and in the following we will
provide analytical solutions to each of them. Furthermore we will provide arguments
for selecting the semi-chemostatic model as the population growth model for the
background resources.

By making the (very good) assumption that the mortality is constant from t to
t+dt the three growth regimes inserted in (3.36) may be solved analytically as shown
in appendix A.1. Analytical solutions for the ODEs describing the background
spectrum allow a substantial reduction of computational time compared to the case
where each ODE is solved numerically (cf. section 4.1.2).

Multiplying the solutions in appendix A.1 with 1/∆w give the solutions for the
background density spectrum with the three different growth rate functions:

nb(w, t)|RM =
Kw

(
1− µw

rw

)
nb(w, 0)(

Kw(1− µw

rw
)− nb(w, 0)

)
e−(rw−µw)t + nb(w, 0)

(3.43a)

nb(w, t)|P = Kw

√√√√ rw−µw

rw
nb(w, 0)2

( rw−µw

rw
K2

w − nb(w, 0)2)e−2(rw−µw)t + nb(w, 0)2
(3.43b)

nb(w, t)|SC =
rwKw

rw + µw
−
(

rwKw

rw + µw
− nb(w, 0)

)
e−(rw+µw)t (3.43c)

where µw = µb(w,N) and Kw = nb,ss(w) = κw−λ. The three resource responses
are depicted in figure 3.11(a), and as seen in the figure and discussed in section 5.2.3
there is no practical difference between logistic and parabolic growth.
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Logistic (and parabolic) regeneration times upon depletion depends heavily on
the degree of depletion since the population is regenerated exponentially. Regener-
ation time in the semi-chemostatic model is only a very weak function of depletion
level since the inflow flux dominates. This is depicted in figure 3.11(b).

In the numerical implementation we have to use a minimum level of nb(w, 0) to
avoid that parts of the spectrum goes extinct in the transient of the simulation. If
predator-prey dynamics are strong enough in the resulting cycle then the resources
may be grazed to this minimum level. In this case simulations based on logistic and
parabolic growth models will be dependent on the choice of the minimum level as
depicted in figure 3.11(b). To avoid this we use the semi-chemostatic growth model
in the simulations.

Furthermore, there is also a good physical reason for using semi-chemostatic
growth: it is not likely that resources may be completely depleted, but that a flux
of resources will occur from areas with higher resource abundances.
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Figure 3.11: (a) Comparison of logistic (solid), parabolic (dotted), and semi-chemostatic
(dashed) growth. Parameters: rw = 1, Kw = 1, µw = 0.1, Rw,0 = 0.001; cf. appendix A.1.
(b) Comparison of regeneration time for logistic and semi-chemostatic growth for different
initial conditions: Rw,0 = 10−5 (solid), Rw,0 = 10−150 (dotted), and Rw,0 = 10−300 (dashed).
Initial condition plays a major role for logistic, but no role for semi-chemostatic growth (plots
coincide). Parameters: rw = 100 (logistic), rw = 2 (semi-chemostatic), Kw = 10−3, µw =
0.1.

Determination of the Rate of Population Regeneration: rw

In this section we will determine a biologically plausible value to be used as a typical
value for the regeneration rate rw in the semi-chemostatic population growth model.
We will find regeneration rate to be an allometric function of resource size w, where
we will determine both the prefactor and the scaling. In the succeeding section we
will determine a typical value for the scaling of the carrying capacity κ.

rw scales the rate of population regeneration. More technically rw is the multi-
plicative inverse of the characteristic time τ for a population to recover, which must
scale with the time it takes a recruit to reach maturation, which again scales with
body size:

rw = r0w
−b (3.44)

The scaling of the characteristic life time for an individual with the maximum
size w∞ should principally be found by integration of the growth rate given in (3.18)
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for the case of reproduction ψ = 1, and abundant food f = 1:

t(w∞) =

∫ w∞

0

1

αihiwk − δiwr − ψi(w)
ϱi

αi
w

dw (3.45)

However, since w∞ is only reached asymptotically the integral is clearly divergent,
which means that we cannot determine the size of the r0 scaling in (3.44). We may
however determine the b parameter by evaluating the integral to some size as i.e.
the size at maturation wmat:

t(w∞) ∼ t(wmat) =

∫ wmat

0

1

αihiwk − δiwr
dw

=

∫ wmat

0

w−r

αihiwk−r − δi
dw

≈
∫ wmat

0

w−r

αihiwk−r
dw ∝ w1−k

mat (3.46)

where the approximation is carried out by using αihiw
k−r ≫ δi (cf. section 3.6). We

note that the scaling of the characteristic time to maturation (3.46) is independent
of r. As discussed in section 3.3 the size at maturation wmat is proportional to the
maximum size w∞, which means that we may determine b:

t(wmat) ∝ r−1
w ⇔ rw ∝ wk−1 ⇒ b = 1− k (3.47)

To check that the assumptions used in this derivation actually holds (3.45) is
integrated numerically and t(0.9w∞) is plotted and fitted for various w∞ in figure
3.12. We see that the obtained b = 0.250 is identical to the derived b = 1−3/4 = 1/4.

An emerging property of the growth model in this thesis is thus the general
scaling of r ∝ w−1/4. Metabolic theory (Brown et al. (2004)) and DEB (Kooijman
(2000)) set forward a theoretical framework to study and understand the mech-
anisms behind empirically observed scaling relationships. Both these frameworks
yield the same scaling of r ∝ w−1/4.

Determining a realistic size range for r0 is more difficult. For large r0 the back-
ground spectrum in (3.36) becomes close to constant at the carrying capacity. For
small values of r0 the background will go to zero very easily in size ranges that
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Figure 3.12: Result of numerical in-
tegration of t(0.9w∞) in (3.45) and
polynomial fit in logspace. The time
to reach 0.9w∞ is plotted on linear
axes to emphasise the strong depen-
dence of ultimate size w∞. Parame-
ters from table 3.5.
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are exposed to predation. Large r0 will alow species populations feeding on the
background spectrum to reach higher biomasses.

We may not use the r0 value of r0 = 1/1.786 gb/year from figure 3.12 without
caution since this value changes if we change the end-point of integration (0.9w∞)
due to the flattening of the growth curve (cf. figure 3.3); w∞ is only reached asymp-
totically.

From Savage et al. (2004) we can extract r0 ∈ [0.6; 19] gb/year for zooplankton in
the [3; 32] C◦ range (r0 ∈ [0.6; 4.2] gb/year in [3; 17] C◦) and r0 ∈ [1.6; 4.2] gb/year
for fish in the [3; 17] C◦. They relate the regeneration rate to r in the exponential
solution to Ṅ = rN , which is equivalent to the regeneration rate in the logistic
growth equation when the population density is far away from the carrying capac-
ity. Yodzis & Innes (1992) calculated regeneration rates from the difference between
maximum intake rate and maintenance and arrives at r0 = 37.1 gb/year for verte-
brate ectotherms∗, which is a quite high value for regeneration rate that corresponds
to the value for tropical waters in Savage et al. (2004).

Yodzis & Innes (1992) also states a regeneration rate of 2.17 gb/year for phyto-
plankton in the 10−8 − 10−11 g range, which again seems overestimated compared
to the graph for algae in Savage et al. (2004). Also as stated above Savage et al.
(2004) give larger regeneration rates for fish than zooplankton. The lower regenera-
tion rates at lower trophic levels means that we may expect the lower levels to have a
higher trophic transfer efficiency (efficiency of moving biomass between trophic lev-
els) to allow constant biomass throughout the community spectrum. More research
should however be put into this problem before making conclusions.

We have that r0 ∈ [0.6; 19] gb/year, and as a typical value we may aim for
using r0 ≈ 1.6 gb/year (T = 10◦). In the previous section we argued that the semi-
chemostatic model will be used in the simulations of this thesis. The mechanism
behind the semi-chemostatic model is inflow from a resource refuge, and to link
values of r0 in this model to the regeneration rate rw = r0w

−b in the logistic
population model we plot the two models for three different resource sizes w in figure
3.13. From the plots we see that r0 = 1.0 gb/year would be the corresponding value
for the semi-chemostatic model. We note that we actually end up with a r0 value
close to value of r0 = 1/1.786 gb/year from figure 3.12. In the fresh water studies of
Persson et al. (2004) their influx rate in the semi-chemostatic resource corresponds
to r0 = 1.7 gb/year in the framework of this thesis. Section 5.2 investigates the role
of r0 in a one-species version of the model.

Determination of the Spectrum Magnitude: κ (and spectrum slope λ)

In the following a typical value for the magnitude κ of the background spectrum
will be determined. The magnitude of the background spectrum sets the carrying
capacity Kw = κw−λ for the growth model of the background.

Determining a realistic size range of κ from the literature is very difficult due
to low interest in the absolute magnitude of the spectrum and intense focus on the
allometric exponent λ. κ sets the total biomass of the resource spectrum and may
thus be quite different among ecosystems. In the following we will try to assess κ
from three different approaches.

Approach 1) Rodriguez & Mullin (1986) presents data from the North Pacific
Central Gyre from which we may calculate κ from the biomass density given by

∗However, they do not state whether it is for fish or terrestrial species.
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Figure 3.13: Comparison of population regeneration times for different sizes of resources:
w = 1g (solid), w = 0.1 g (dotted), and w = 0.01 g (dashed). Blue curves show logistic
growth using rw = 1.6w−1/4 year−1, and black curves semi-chemostatic growth using rw =
1.0w−1/4 year−1; the black curves are shifted to the right to allow comparison with the logistic
regeneration times. We see that the actual time of active recover is equivalent for the two
growth models with the used r0. Parameters: Kw = 10−3 gm−3, µw = 0year−1, Rw,0 =
10−10 gm−3.

b(w) = nb(w)w = κw1−λ to be κ = 10−3 g1+λ/m3 (assuming λ = 2, and using
conversion factors from Boudreau & Dickie (1992)).

Approach 2) According to Lewy (2006) ICES data indicate that the 10 most
commercially important species in the North Sea have a biomass of ∼ 1.5 · 1012g
in the [5.8g; 11.3g] part of the community spectrum. If we thus assume that the
total biomass in this range is 5 · 1012g then we may find the biomass concentration
by dividing with the volume of the North Sea (94 · 103 km3 from MUMM (2006)).
Finally the biomass concentration B =

∫ w2

w1
nb(w) dw = κ ln(w2/w1) gives us κ =

7.9 · 10−2 g1+λ/m3 (assuming λ = 2).
Approach 3) Andersen & Beyer (2006) examine steady-states in the commu-

nity spectrum based on a model that is equivalent to parts of the model in this
thesis (cf. section 5.1). From the idea set forward herein we may equate the re-
quired intake f(w,N)Imax(w) (cf. (3.9)) with the encountered food from a constant
community spectrum, which is given by v(w)ϕc(w) (cf. (3.35)). This can be used
to find the minimum required κ to sustain the species (again we assume λ ≈ 2):

f(w,N)Imax(w) = f(w,N)hwk = v(w)ϕc(w)

= γwq
√
2πκσβ2−λ exp

[
1

2
σ2(2− λ)2

]
w2−λ

≈ γ
√
2πκσwq+2−λ ⇔

λ = 2 + q − k ≈ 2.08 ∧ κ =
hf(w,N)√

2πγσ
≈ 10−3 g1+λ/m3 (3.48)

The calculation was carried out using the default parameters in table 3.5 with a
feeding level of 1. We see that the slope of the spectrum only depends on the
allometric exponents for search volume and metabolic requirements. The slope is
invariant of predator-prey ratio β and the width of the food selection function σ.

The magnitude of the background spectrum κ is a function of σ and more spe-
cialised species (small σ) require larger magnitudes. h and γ may be correlated
such that a high search volume (high γ) requires a high metabolism (high h). It
could be expected that κ should depend on the scaling of the primary production
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(essentially light and nutrients). This is not the case in this derivation since the
minimal required κ is calculated from a matching to species requirements. Further-
more no connection to primary production mechanisms that control the background
spectrum are present in the model at hand. The background spectrum may be con-
sidered the primary production.

Instead of understanding (3.48) as a matching of κ to the species it might be
more informative to understand it as an evolutionary fitting of the physiological
requirements of the species to the available primary production. A study that
examines actual values of κ, h, γ, and σ from different ecosystems (ie. deep sea
vs. traditional pelagic/demarsal systems) could be interesting since this framework
proposes a simple relation.

From the three different approaches we select κ = 10−3 g1+λ/m3 as a typical
value for the magnitude of the background spectrum. This value is supported by
the data from Rodriguez & Mullin (1986) and by theory from Andersen & Beyer
(2006) in a model equivalent to the size-structured model of this thesis.

3.6 Model Summary and Default Parameters

In this chapter we have developed a simple size-structured population model for
a marine ecosystem. The model is simple since only one parameter is used to
characterise a species, namely the ultimate size w∞. Thus real species are lumped
into the species notion of this framework by considering their ultimate size.

Table 3.2 summarises the equations needed for modelling the p-state of the
species, which are the PDE conservation equation and the reproduction that is the
boundary equation in the PDE. The table also includes the equations needed for
modelling the resources in the background spectrum. Table 3.4 lists the default
parameters for the background spectrum. With these parameters the resources are
employed in a biologically plausible region of parameter space.

After each equation the original equation number is shown in square brackets,
and a new number is provided to make future references more easy. A reference to
the section where each parameter was determined is given for all parameters.

The equations required for modelling the i-state are given in table 3.3. These
include equations for growth, selection of reproducing individuals, food intake, and
mortality.

The model naturally includes more species parameters than just w∞. These are
constant over all species, but in future studies one might try and make more param-
eters species-dependent. Maybe inter-species differences in more than one trait is
important for coexistence (cf. chapter 8). Table 3.5 lists the default species param-
eters. These parameters are needed to scale the model into a biologically plausible
region of the parameter space, which makes interpretation of model simulations
easier.

When simulations are carried out the initial values of the spectra are: 1) a
slope of −2 to ensure that larger individuals are under-estimated according to the
results in section 5.1. 2) K(w∞) magnitudes of the species spectra are selected
according to (5.6) with a total magnitude below the background spectrum. The
initial configuration is mainly important for the length of the transient, but if one
wants to study states that are bistable one should of course select initial conditions
more carefully.
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Later in chapter 7 the model is extended to be used as a framework for size-
structured food webs. With this addition actual food web configurations can be
examined.

Table 3.2: Summary of p-state, E-state, and background spectrum equations.

Species PDE conservation equation:

∂
∂tni(w, t) +

∂
∂w

(
gi(w,N)ni(w, t)

)
= −µi(w,N)ni(w, t) [3.2] (3.49)

Reproduction (flux boundary condition, see details in sec. 3.3):

Ri,tot(t) = gi(w0)ni(w0, t) =
eα
w0

∫
gi,repro,eff (w

′)ni(w
′) dw′ [3.23] (3.50)

Total spectrum (the environment – E-state – for the species):

N(w, t) = nb(w) +
∑

i ni(w, t) [3.1] (3.51)

Background spectrum without exploitation (steady-state or time average):

nb,ss(w) = κw−λ [3.34] (3.52)

Background ODE conservation equation (details in sec. 3.5.2):

ṅb(w, t) = nb(w, t)
(
G(nb, w)− µb(w,N)

)
[3.36] (3.53)

Semi-chemostatic resource population growth rate function:

G(nb, w) = rw
1

nb(w,t)

(
Kw − nb(w, t)

)
[3.37c] (3.54)

Background regeneration rate for background resources of weight w:

rw = r0w
−b [3.44] (3.55)

Carrying capacity for size w resource (cf. section 3.5.2):

Kw = nb,ss(w) (3.56)
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Table 3.3: Summary of i-state and the most important supporting equations.

Growth function (see complications in sec. 3.2.3):

gi(w,N) = αfi(w,N)hwk − δwr − ψi(w)
ϱ
αw [3.18] (3.57)

Growth function in the ϱ(w∞) formulation:

gi(w,N) = αfi(w,N)hwk−δwr−ψi(w)
(
αhwk−1

∞ − δwr−1
∞
)
w [3.22] (3.58)

Reproduction selection function:

ψi(w) =
1

1+exp(wmat−w
χ )

[3.25] (3.59)

Relation between wmat and w∞:

wmat = ηw∞,i [3.27] (3.60)

Feeding level:

fi(wp, N) =
v(wp)ϕi(wp,N)

v(wp)ϕi(wp,N)+Imax(wp)
[3.8] (3.61)

Search volume:

v(w) = ζγwq [3.7] (3.62)

Maximum food intake rate:

Imax(w) = hwk [3.9] (3.63)

Available food:

ϕi(wp, N) =
∫
N(w, t)wsi(w,wp) dw [3.5] (3.64)

Food selection function:

s(w,wp) = exp
[
− ln2

(
w

βwp

)
/(2σ2)

]
[3.4] (3.65)

Total mortality rate:

µi(w,N) =
∑

j µp,j(w,N) + µi,s(w) + µi,0 [3.31] (3.66)

Predation mortality from species j:

µp,j(w,N) =
∫
s(w,wp) (1− fj(wp, N)) v(wp)nj(wp) dwp [3.32b] (3.67)

Starvation mortality:

µs,i(w) =

{
0 gi,in(w)− gi,main(w) ≥ 0

s
gi,main(w)−gi,in(w)

w gi,in(w)− gi,main(w) < 0
[3.33] (3.68)

Table 3.4: Default background parameters.

κ 10−3 g1+λ/m3 Background spectrum magnitude (sec. 3.5.2).

λ 2.05 - Slope of background spectrum (sec. 3.5.1).

r0 1.0 gb/year Prefactor for resource regeneration rate (sec. 3.5.2).
b 1/4 - Allometric scaling exponent for resource regeneration

rate (sec. 3.5.2).

wcut 0.05 g Cut-off of the background spectrum (sec. 3.5.1).
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Table 3.5: Default species parameters. Maximum size w∞ is the only parameter used to
characterise a specie.

w0 0.01 g Recruit size (sec. 3.3).

k 3/4 - Allometric scaling of food intake (sec. 3.2.3).

r 1 - Allometric scaling of maintenance (sec. 3.2.3).

α 0.3 - Assimilation efficiency (sec. 3.2.3).

h 25 g1−k/year Prefactor for maximum food intake (sec. 3.2.3).

δ 0.11 g1−r/year Prefactor for maintenance (sec. 3.2.3).
ϱ 0.15 1/year Mass percentage rate invested in reproduction (sec.

3.2.3). Not used in the ϱ(w∞) (3.57) formulation.
e 0.1 - Efficiency of turning spawning mass into recruits of

size w0 (sec. 3.3).
η 1/8 - Fraction of ultimate size that determines maturation

size in (3.60) (sec. 3.3).
χ 0.091 - Scaling of the reproduction selection function width

(corresponds to x = 0.8 and y = 0.1, sec. 3.3).

q 0.82 - Allometric scaling of search volume (sec. 3.2.1).

γ 104 m3g
−q
/ year Search volume prefactor (sec. 3.2.1).

β 0.01 - Prey-predator mass ratio (sec. 3.2.1).

σ 1 - Width of prey selection function (sec. 3.2.1).

µ0 0.1 1/year Background mortality rate (sec. 3.4).

s 5 - Starvation mortality coefficient (sec. 3.4.2).
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4
Numerical Setup

In this chapter a method for solving the Partial Differential Equation (PDE) describ-
ing the dynamics of the p-state in (3.49) is derived. After the derivation convergence
tests is carried out to determine how many grid points and how small time steps
that is needed in simulations. It is found that numerical diffusion plays a minor role
in the numerical method. However, diffusion is concluded not to have a qualitative
effect, and methods for removing diffusion are also discussed.

The treatment of the numerical method for solving the PDE is followed by
a description of the setup of the non-linear grid and the numerical evaluation of
integrals.

4.1 Numerical Solution of the p-state PDE

General formulations of the structure of analytical solutions to the PDE in (3.49)
that describes the dynamics of the p-state can be found in e.g. de Roos (1996).
However, it is not possible to extract explicit numerical solutions of the PDE, which
means that we will have to numerically simulate the set of equations set forward in
tables 3.2–3.3. The numerical setup along with convergence tests of the numerical
solution of the PDE is the topic of this section.

4.1.1 Numerical Method for Solving the PDE

In the following we will describe the numerical method used to solve the PDE in
(3.49). For notational simplicity we will not include the species number i. Instead
we will use index i for time discretization. The grid points wm are distributed
evenly on a logarithmic scale as discussed in section 4.2 and the time t is evenly
discretisized as:

wm = w0 +
m∑
j=1

∆wm , i = 0, 1, 2, . . . ,M − 1 (4.1)

ti = t0 + i∆t , i = 0, 1, 2, . . . , iend (4.2)

where it is noted that the wm grid has M points.
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As in section 2.3 we have to translate between discrete and analytical derivatives.
We may use the following approximations for time t and weight w derivatives:

∂n(w, t)

∂t

∣∣∣∣
t=ti,w=wm

=
ni+1
m − nim

∆t
+O(∆t) (4.3)

∂g(w,N)n(w, t)

∂w

∣∣∣∣
t=ti,w=wm

=
gimn

i+1
m − gim−1n

i+1
m−1

∆wm
+O(∆wm) (4.4)

where nim denotes the density at time-step i and weight index m. Similarly for
the growth function gim. The approximation in (4.4) is known as the Upwind ap-
proximation because we calculate the derivative in m from m and m − 1. This
can be done since the growth function g(w,N) always is positive∗; remember that
the problem of ”shrinking fish” upon food depletion was solved by introducing a
starvation mortality (section 3.4.2). We also note that the approximation in (4.4) is
semi-implicit since we are using the density at time-step i+1. This implicit Upwind
scheme of first order in both w and t is very stable, but diffusive. The problem of
numerical diffusion is treated in the next section.

By using (4.3)–(4.4) we may write the PDE describing the p-state dynamics in
(3.49) as:

ni+1
m − nim

∆t
+
gimn

i+1
m − gim−1n

i+1
m−1

∆wm
= −µi

mn
i+1
m ⇔ (4.5)

ni+1
m−1

(
− ∆t

∆wm
gim−1

)
︸ ︷︷ ︸

Am

+ni+1
m

(
1 +

∆t

∆wm
gim +∆tµi

m

)
︸ ︷︷ ︸

Bm

= nim︸︷︷︸
Cm

(4.6)

The boundary condition g(0, N)n(0, t) is equal to the reproduction R as de-
scribed in (3.50). This gives us gi0n

i+1
0 = R and we may recast (4.5) to obtain:

ni+1
1 − ni1
∆t

+
gi1n

i+1
1 −R

∆w1
= −µi

1n
i+1
1 ⇔

ni+1
1

(
1 +

∆t

∆w1
gi1 +∆tµi

1

)
︸ ︷︷ ︸

B1

= ni1 +
∆t

∆w1
R︸ ︷︷ ︸

C1

(4.7)

where we note the identity A1 = 0. The Am, Bm, and Cm identities in (4.6) and
(4.7) may be used to easily describe the problem to be solved in a simple manner:

B1

A2 B2

A3 B3

. . .
. . .

AM BM




ni+1
1

ni+1
2

ni+1
3
...

ni+1
M

 =


C1

C2

C3

...
CM

 (4.8)

Naturally we are interested in solving for the vector ni+1
m since this gives us the

density spectrum at the next time-step. The matrix in (4.8) is bidiagonal, which

∗A numerical scheme could be implemented even if fish were allowed to shrink in size. A case
in the solver changing between a Down- and Upwind method should then be implemented.

M. Pedersen, Friday 28th July, 2006 Coexistence in size-structured ecosystems



Section 4.1: Numerical Solution of the p-state PDE 49

means that we may easily solve for ni+1
m using the simple iteration:

Amn
i+1
m−1 +Bmn

i+1
m = Cm ⇔

ni+1
m =

Cm −Amn
i+1
m−1

Bm
(4.9)

This iteration process naturally also works for the first grid point since (4.7) gives
us A1 = 0.

In the following section we will perform convergence test of this semi-implicit
Upwind scheme. However, to ensure stability one should obey the Courant condition
(i.e. Press et al. (1992)):

|gim|∆t
∆wm

≤ 1 (4.10)

which basically states that an individual should grow less than ∆wm in the time-
step ∆t. The Courant condition is the same criterion as the one we used in the
derivation of the PDE (3.49) to ensure that individuals grow through the grid points
successively (section 2.3).

4.1.2 Convergence – Selection of Step Size and Grid Spacing

In this section we will determine the required number of grid points M in wm and
the required ∆t for convergence. Cyclic states are more difficult to model than
steady states and therefore a cyclic state in the one species model was located. The
parameters from section 3.6 are used with the exception of κ = 1.5 · 10−4 g/m3, and
a regeneration rate for the background resources of r0 = 20 gb/year. The modelled
species has w∞ = 18 kg and the selected parameters result in cyclic states as it will
become evident in the following.

To obtain time convergence we run simulations with M = 200 and ∆t = 2/2j

(j = 1, 2, . . . , 13). Figure 4.1(a) shows that the spectrum after 100years has con-
verged after j = 5. We can extract a measure of the error by using:

e(∆t) =
1

M

M∑
m=1

(
n
(
wm, t

′;∆t
)
− n

(
wm, t

′;
1

2
∆t
))2

(4.11)

which states a measure of the error introduced by doubling ∆t at a given time-step
t′. Since the used implicit Upwind scheme is of first order in time we expect errors
in the magnitude:

e(∆t) ∝ O
(
∆t
)
−O

(1
2
∆t
)
=

1

2
∆t (4.12)

which means that we halve the error whenever we double ∆t. More explicitly the
expected error will be e(2−j∆t) ∝ 2−(j+1)∆t. Figure 4.1(b) shows that the observed
error indeed do follow this.

Figure 4.1(a) shows that convergence is definitely reached after j = 5, but from
4.1(b) we may also justify the use of j = 4. As a result we may take a value of
∆t = 0.075 in between.

As expected from the Courant condition (4.10) we need a smaller ∆t as we
increase M . Figure 4.2(a) shows the biomass evolution from simulations using dif-
ferentM calculated using (2.2). When making the plot we use smaller ∆t for larger
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Figure 4.1: Simulations using M = 200 grid points and ∆t = 2/2j (j = 1, 2, . . . , 13). (a) For
increasing j we see that the spectrum after 100years has converged for j = 5. (b) The error
calculated from (4.11) for j in ∆t = 2/2j .

M to ensure that time convergence is fulfilled. From the figure we see that the solu-
tions from differingM has different period lengths. This is mainly due to numerical
diffusion in the implicit Upwind scheme, but may also partly be due to discretization
errors. We may calculate the error introduced when lowering N as done in the time
convergence test via (4.11). However, due to computational time we cannot double
M between each run, but instead we run tests using M = 100, 150, 200, . . . , 600 and
calculate the error introduced by lowering M with Mextra = 50 grid points:

e(M) =
1

M

M∑
m=1

(
n
(
wm, t

′;M)− n
(
wm′ , t′′;M +Mextra|wm

))2

(4.13)

where we get the problem that we are not evaluating the simulations along the same
w grid. Therefore we use linear interpolation on the solution with the larger grid to
retrieve its densities at the grid points from the simulation with the smaller grid.

Figure 4.3(a) shows the error calculated at t′ = t′′ = 100 years (blue), and at
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Figure 4.2: Simulations for different number of grid points M . (a) Biomass evolution; see
figure (b) for colour nomenclature. (b) Density spectrum at the first peak in the biomass
evolution below 300years. These spectra are close to identical, but the states have different
period lengths.
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Figure 4.3: Simulations for different number of grid points M . (a) Errors calculated using
(4.13). After 100years (blue) and of the spectra in figure 4.2(b) (red). (b) Period lengths
for reproduction and biomass, and the relative error in period length when lowering M with
Mextra = 50 (dashed).

the first period top below t = 300 years (red). The blue curve shows a decreasing
error since the difference in period lengths are getting smaller and the solutions
thus become more identical. However, the red curve shows that the actual error
at comparable time-steps is not getting better for increasing M . The red curve is
calculated on the densities in figure 4.2(b).

So if the error is not getting smaller, then why use a larger grid? In figure 4.2(a)
we saw that M infers changes on the period length of the cyclic state and from
figure 4.3(a) we see that the discretization error is not the main driver for this. The
reason for the changes in period length is numerical diffusion. Figure 4.3(b) shows
the period length and the relative error introduced when lowering M with Mextra,
and from that we can see no clear sign of grid convergence within the examined M
range; and aiming for even higher M is unrealistic. Period lengths where calculated
using Discrete Fourier Transform (DFT).

To examine the problem of numerical diffusion the Quadratic Upwind Interpola-
tion for Convective Kinematics (QUICK) scheme was implemented using Versteeg
& Malalasekera (1995) and Ferziger & Perić (2002) for computing coefficients on a
non-linear grid. The QUICK scheme is a third order scheme in the w dimension,
which means that the diffusion will be less pronounced. Numerical diffusion is most
important in species with larger w∞ since their longer growth trajectory leaves more
time for diffusion. The simulations from the above convergence tests was repeated
with the QUICK scheme for the species having w∞ = 18 kg, and figure 4.4 shows
the results.

From figure 4.4(a) wee see that numerical diffusion do get less pronounced with
the high-order scheme since the period lengths become more similar. In figure 4.4(b)
we see that the period length changes less with grid size and that grid convergence
seems more clear than in the Upwind scheme in figure 4.3(b). This means that
we should aim for the QUICK scheme which do not require substantially more
computation time since it only requires us to invert a tridiagonal matrix compared
to the bidiagonal matrix in the Upwind scheme. However, the draw-back from the
QUICK scheme is that it imposes oscillations (overshoots) that may lead to small
negative numbers in the density matrix. This can be circumvented by using the
techniques set forward in Zijlema (1996).
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Figure 4.4: Simulations for different M using the QUICK scheme. (a) Biomass evolution.
(b) Period lengths for reproduction and biomass, and the relative error in period length when
lowering M with Mextra = 50 (dashed).

Conclusion

The implementation has been tested in three independent ways. 1) Stationary
solutions with constant growth, mortality, and boundary condition was compared
to analytical results from Mathematica. 2) Two independent implementations was
compared. And lastly 3) simulations from the QUICK and Upwind scheme was
compared.

Numerical diffusion can be minimised by using the QUICK scheme or by adding
natural diffusion (as mentioned in section 2.3.1). However, assessing a diffusional
term, or any other higher order term encapsulating differing growth trajectories, for
the PDE in (3.49) is out of the scope of this thesis. Also it would be nice to able to
use the model without the complexity of diffusion.

A third way of avoiding diffusion would be to solve for growth trajectories (char-
acteristics) for the super-individuals, and then make sure that the set of tracked
super-individuals is dense enough to allow evaluation of the integrals involved in
the model. A method for solving characteristics in Physiologically Structured Pop-
ulation (PSP) models is the Escalator Boxcar Train (EBT) method. However, this
will require quite some implementation effort and it might be too heavy computa-
tionally. This method is not pursued in this thesis.

The convergence tests show that numerical diffusion is not strong enough to
change the qualitative result of the simulations. The techniques of Zijlema (1996)
have not been implemented due to time constraints. Therefore the semi-implicit
Upwind scheme using M = 200 and ∆t = 0.05 will be used in this thesis. However,
actually the tests showed that ∆t = 0.075 could be used, but since faster population
dynamics might be encountered the smaller ∆t will be used. As seen by compar-
ing figures 4.3 and 4.4 the semi-implicit Upwind scheme is good enough, but with
QUICK and the techniques by Zijlema (1996) it might be possible to use a lower
M and thus also a smaller ∆t, which will lead to shorter computation times which
is clearly wanted for using the model as a multi-species model as in the following
chapters.
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4.2 Defining the Grid

The PDE is a one dimensional transport equation, which means that we need a grid
in the weight w dimension. As previously discussed the density function ni(w, t) of
the species is best described in a logarithmic plot. This is due to the fact that the
growth function (∼transport velocity) gi(w) (3.57) of the super-individuals naturally
is a linear function in a double logarithmic plot.

To have the grid points for computation logarithmically evenly distributed in w
space the following recursion apply:

logwm+1 − logwm = k ⇔
wm+1 = wm10k (4.14)

where k is the constant length between grid points in logarithmic space. Index m
refers to the grid point number. We assume that the first grid point is w1 and
naturally it is located at the recruit size w1 = w0 (cf. table 3.5). From this we
obtain:

wm = w010
(m−1)k (4.15)

which can be used directly to calculate the grid. Often one do not have a value for k
but a certain number of desired points M in the grid. From (4.15) we may retrieve
k from the two end points w0, wmax, and the desired number of grid points M :

k =
1

M − 1
log

(
wmax

w0

)
(4.16)

In addition to the w grid we also need dwm to perform numerical evaluations
of integrals in the simulations. Numerically we naturally need ∆wm:

∆wm =
dwm

dm
=

d

dm
w010

(m−1)k

= kw0 ln(10)10
(m−1)k (4.17)

If we had had a linear grid ∆wm would of course have been independent of m.

4.3 Integrals & the Background Spectrum

This section describing the numerical setup is not exhaustive since implementations
of i.e. the functions in tables 3.2–3.3 is straightforward. However, to do justice it
is worthwhile binding a couple of notes the modelling of the background spectrum
and of integral evaluation.

Integrals of i.e. the biomass (2.2) is calculated numerically using (4.17) and
summation:

B(t) =

∫ w2

w1

ni(w, t)w dw ≃
m2∑
m1

ni(wm, t)wm∆wm (4.18)

Integrals can be evaluated more precisely using i.e. trapezoidal numerical integra-
tion. However, doing so makes the computational load much higher, and no differ-
ence was seen in actual simulations.
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The grid for the background wnb is equal to the w grid from (4.15) and extended
towards smaller weights using the same k distance in logarithmic space. It is ex-
tended low enough to enable the use of the food-selection function s(w,wp) (3.65)
at wp = w0. When using i.e. M = 200 and wcut from table 3.4 the wnb grid will
contain 117 grid points if wnb should be extended three orders of magnitude below
w0.

The background spectrum is modelled by using a density-dependent growth
model (i.e. semi-chemostatic or logistic growth). In each grid point of wnb we have
to solve an Ordinary Differential Equation (ODE). Luckily these can be solved
analytically so that we can keep the computational load to a minimum (cf. section
3.5.2).
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5
The Single-Species Model

In this chapter we will start investigating the size-structured model summarised
in section 3.6. Before advancing to multiple species we will focus on just a single
species in this chapter. This is done to gain an intuitive understanding of the model
before adding the complexity of multiple species in the following chapters.

First we will look at a simplified version of the model to obtain knowledge about
the steady-state single-species spectrum in the model. From this we actually also
obtain the distribution of species in the model.

To gain knowledge about the dynamics of the model from chapter 3 we will
examine the model with just a single species. From the examination we find that the
size-structured model indeed are capable of producing dynamics that are consistent
with the kind of dynamics that is observed in nature. An important discussion in
this chapter is the discussion in section 5.2.5 on the maximum w∞ that can exist
when the background spectrum is truncated (cf. section 3.5.1).

5.1 Steady-state Solution in a Simple Subsystem

In the following we will determine an analytical solution to the steady-state spec-
trum for a single species in a reduced model of the one from chapter 3. We will also
find the distribution of species spectra for different w∞ in the community spectrum
and that the biomass among species are constant.

Since the community spectrum (2.7) is the sum of all species’ size spectra it
should be possible to extract what these spectra will look like in a steady-state
situation:

∂

∂w

(
g(w)n(w)

)
= −µ(w)n(w) (5.1)

In this section we will derive the form of the species’ spectra by following the
approach by Andersen & Beyer (2006). To allow an analytical solution we will not
consider reproduction explicitly, but ignore the ontogenetic shift in the growth curve
and just assume than its cost is part of the maintenance costs. Also we will assume
that food is abundant so that the feeding level becomes fi(w,N) = 1. This allows
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us to write the growth equation (3.57) simply as:

g(w) = αhwk −
(
δ +

ϱ

α

)
wr

= αhwk − αhwk−r
∞ wr (5.2)

where we for the case of generality allow an allometric scaling r of the maintenance
costs, and used g(w∞) = 0 ⇒ δ + ϱ

α = αhwk−r
∞ .

The mortality for an individual of size w is caused by all individuals in the
community spectrum that can predate on it. Predators of size wp search the volume
v(wp) per unit time, and have a concentration of Nc(wp) dwp. The probability per
unit time for size w individuals of being eating is thus v(wp)Nc(wp)s(w,wp) dwp.
The total mortality rate for individuals of size w is found by integration over all
possible predators wp and by adding a background mortality µ0:

µ(w) =

∫ ∞

0

v(wp)Nc(wp)s(w,wp) dwp + µ0 = µpw
1+q−λ + µ0

= µpw
k−1 + µ0 (5.3)

where µp =
√
2πκσβ1+q−λζγ exp

[
1
2σ

2
i (1 + q − λ)2

]
is a predation mortality rate

constant [g1−k/year]. The integral is derived in appendix A.3, and the relation
λ = 2+ q−k from (3.48) has been employed in the last line. As in the discussion in
section 3.4 we again note the allometric exponent of k−1 = −1/4 for size dependent
predation mortality.

Now we can use (5.2) and (5.3) to solve (5.1). This derivation is carried out in
appendix A.4, and the solution for a species of size w∞ is:

n(w;w∞) =
K(w∞)

αh
w−k− µp

αh

(
1−

(
w

w∞

)r−k
)µp+µ0wr−k

∞
αh(r−k)

−1

(5.4)

where we note that the solution consists of a scaling part w−k−a where a =
µp

αh is a
constant that characterises the predation strength. The last part in the parenthesis
makes sure that the spectrum is cut off as w approaches w∞. As discussed in
appendix A.4 the solution (5.4) is only approximate for small deviations around
r = 1 when background mortality is present (µ0 ̸= 0). An exact explicit formulation
of the solution for a general r would be a function of the β-function. For r = 1 the
solution is exact, and for µ0 = 0 the solution is exact for all values of r. One should
of course keep in mind that values of r ≤ k are prohibited since w∞ is not defined
in this case.

Typical values of a ∈ [0; 1.3] (Andersen & Beyer (2006)) are difficult to deter-
mine, but a typical value of a ≈ 0.6 may be a good guess (Andersen (2006)). This
means that the typical slope of a species spectrum is −k−a ≈ −3/4− 0.6 = −1.35.
Again this means that the biomass in evenly distributed size classes B ∝ n(w)w2 is
an increasing function. So, the size-classes gain more weight from predation than
what is lost from predation on them.

Figure 5.1(a) shows the single species spectra (5.4) for different values of the
background mortality µ0, which is naturally seen only to affect the cut-off of the
spectrum. Contrarily the predations strength a naturally affects both the slope of
the scaling part and the shape of the cut-off.

M. Pedersen, Friday 28th July, 2006 Coexistence in size-structured ecosystems



Section 5.2: Dynamic Behaviour of the Single-Species Model 57

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−9

10
−7

10
−5

10
−3

10
−1

10
1

10
3

w [g]

D
en

si
ty

 [(
gm

3 )−
1 ]

µ
0
=0, a=0.6

µ
0
=0.1, a=0.6

µ
0
=0.3, a=0.6

a=0.6, scaling part
µ

0
=0, a=0.85

(a)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−17

10
−15

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

10
1

10
3

w [g]

D
en

si
ty

 [(
gm

3 )−
1 ]

(b)

Figure 5.1: (a) Single species spectra (5.4) for different background mortalities, and predation
strengths (w∞ = 10 kg). µ0 affects the shape of the cut-off, and a naturally affects both
the scaling and the cut-off part. (b) Single species spectra for eight species (w∞ = 10n g,
n = −1, 0, . . . , 6). Dotted line shows the summation of the species’ spectra, and the black line
shows the corresponding community spectrum (2.7) moved up for visibility.

The prefactor K(w∞) is a constant introduced when the solution was found by
integration. K(w∞) should be selected so that the summation of all species sum up
to the community spectrum Nc(w):

Nc(w) =
∑
w∞

n(w;w∞) (5.5)

In appendix A.4.2 the K(w∞) scaling is determined from this to be:

K(w∞) ∝ κcαhw
2k−q−2+

µp
αh∞ (5.6)

With the default parameters from section 3.6 the exponent becomes 2k − q −
2 + a = −0.73. Figure 5.1(b) shows that this scaling indeed scales the spectra of
the species so that they sum up to constitute the community spectrum.

Equation (5.6) also allows us to look at the scaling of the total biomasses of
different species:

Bw∞ =

∫ w∞

0

n(w;w∞)w dw ∝ w
2k−q−2+

µp
αh∞ w

−k− µp
αh∞ w2

∞ = wk−q
∞ (5.7)

where we note that k−q = 3/4−0.82 = −0.07. This means that the biomass across
species is close to constant. I.e. the total biomass of tuna like fish should equal the
total biomass of anchovy like fish.

5.2 Dynamic Behaviour of the Single-Species Model

In this section we will start investigating the single-species version of the size-
structured model summarised in section 3.6. This examination is by no means
exhaustive, and for further in-depth treatments the reader is especially referred to
the many articles by the de Roos and Persson groups on one-species size-structured
models (i.e. de Roos et al. (1990), de Roos et al. (1992), Claessen et al. (2000),
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de Roos & Persson (2001), de Roos et al. (2003a), de Roos & Persson (2003b), and
Persson et al. (2004)). These studies are also often tightly connected to empirical
studies by the Persson group in Swedish lakes.

The treatment of the single-species dynamics in this section will primarily focus
on the role that the background resources play for the species spectrum dynamics.
This means that the most interesting parameters are the magnitude of the back-
ground spectrum κ, and the prefactor for the regeneration rate r0 (cf. table 3.4).
Later in the section we will however also examine the roles of w∞ and cannibalism.

First we will focus on the different kinds of dynamics present in the model.
Then examples of the different dynamics are given in section 5.2.1 followed by a
discussion that concludes that the dynamic states are consistent with the analytical
solutions from the previous section (section 5.2.2). After this it is examined how
w∞, cannibalism, and different growth functions for the background resources affect
the distribution of the different dynamic states (section 5.2.3). This is followed by
more thorough examinations of cannibalism and w∞ in sections 5.2.4–5.2.5. Section
5.2.5 more specifically examines the role of w∞ for species persistence with a given
wcut cut-off of the background spectrum, and provides important discussions for
the multi-species studies in the next chapter. The treatment of the single-species
dynamics is rounded off by a discussion in section 5.2.6 that concludes that the
dynamics exposed by the model in this thesis may very well be consistent with the
kinds of dynamics that is observed in nature.

Figure 5.2 shows an approximate map of the dynamics of the one-species model
using the default parameters from section 3.6. The background spectrum is present
at all size ranges to give the species access to feeding resources throughout its
life. One can in this case think of the background spectrum as everything in the
ecosystem except the species itself with the unrealistic assumption that nobody
predates on the considered species (except through cannibalism).

r0 Extinction Predator-preycyclesSteady-statepopulations10-4 10-3 10-2 10-1 10010-1100101 Single-generationcycles Figure 5.2: Approximate map of the dynamics
in the single-species (w∞ = 10 kg) model with
semi-chemostatic growth rate on the background
spectrum. The transition to predator-prey states
is quite abrupt, and the transition from steady-
state to single-generation states is more gradual.
The ×’s mark parameters used to illustrate the
different kinds of dynamics in the following sec-
tions. The black × marks the default parameters
from table 3.4.

The map of the dynamics in figure 5.2 consists of four different regions. One
where species go extinct because resources are too scarce to support the species.
This minimum level can be predicted theoretically (next section). In the last three
regions the species can persist, and the regions are constituted by a region of steady-
state solutions, one with predator-prey cyclic states, and one with single-generation
states. In the following sections examples of the different types of dynamics are
treated more carefully. The transition from steady-states to predator-prey cycles is
quite abrupt, whereas the transition from steady-state to single-generation states is
more gradual (cf. section 5.2.3 and 5.2.4).
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An important parameter for the dynamics is the efficiency e of turning spawning
mass into recruits of size w0. If this value is very low it naturally has the effect of
being a strong damper. A large e is obtained if one aim for starting the spectrum
simulation at large size w0. Thus one removes spectrum dynamics in this process,
which is not desirable. The smaller a spectrum that is modelled the closer one gets
to unstructured models – this is why size-structured modelling is mostly relevant in
systems where individuals grow several orders in magnitude throughout their life;
and then of course if size-dependent mechanisms are present. The prefactor γ of
the search volume also plays an important role for the dynamics since it sets the
scaling of the predator-prey fluxes. Thus if one do not consider which parameter
values of i.e. r0 and γ that are suitable in natural systems it is possible to end up
in regions of parameter space where there is very low degree or an extreme high
degree of dynamics (wide vs. thin regions of steady-state and single-generation
states). In this respect the modelling framework in this thesis has the advantage
that its parameters in real systems can be assessed.

5.2.1 Examples of Dynamics in the Single-Species Model

In this section we will describe the different kinds of dynamics present in the model.
As seen in figure 5.2 the map of the dynamics is divided into four regions: extinction,
steady-state, single-generation states, and predator-prey states. In the following
four sections we will treat each region in more details.

Extinction

In the region of extinction in figure 5.2 the food abundance is too scarce to support
persistence of the species. In the following we will determine the minimum (critical)
magnitude κcrit of the background spectrum that allows a species to persist.

The minimum feeding level fmin(w,N) required by an individual to pay full
maintenance and contribute with maximum reproduction can be found by solving
(3.57) for f(w,N):

fmin(w,N) =
δwr + ψi(w)

ϱi

αi
w

αhwk
(5.8)

where we note that fmin(w,N) naturally cannot become larger than 1 for w ∈
[w0;w∞[ if we i.e. use the ϱ = ϱ(w∞) formulation (3.58). The minimum feeding
level fcrit(w,N) needed for just being capable of paying maintenance is found by
setting ∀w : ψi(w) = 0. By using (3.61) we may turn this into a critical food
abundance needed just to sustain a species:

ϕcrit(w,N) =
fcrit(w,N)Imax(w)

v(w) (1− fcrit(w,N))
(5.9)

where we note that a slightly higher abundance naturally is required to enable
persistence of a species since some reproduction is required for this.

If we ignore the food available from cannibalism we may combine (5.9) with
(3.35) and obtain an expression for the minimum value of κ that allows the species
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to reach maturation for persistence:

κcrit(w∞) =
ϕcrit(wmat, N)√

2πσβ2−λ
i exp

[
1
2σ

2
i (2− λ)2

]
w2−λ

mat

=
δwλ+r−q−2

mat

αγ
√
2πσβ2−λ

i exp
[
1
2σ

2
i (2− λ)2

] (
1− δwr−k

mat

αh

) (5.10)

Using the default parameters from table 3.5 gives κcrit = 6.6 · 10−5 g1+λ/m3 for a
w∞ = 10 kg species. The minimum value allowing the species to persist in figure 5.2
is seen to be κ ≈ 7.5 · 10−5 g1+λ/m3, which is in agreement with the theoretically
predicted value. We do also expect a higher value in the simulations since (5.10)
does not take into account that some energy also is required for reproduction. We
note that the value of κ naturally increases with wmat.
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: slope λ+r−q−2=0.23 Figure 5.3: κcrit(w∞) plotted (blue) using rela-
tion (3.60). The plot is very close to an allometric
function of κcrit(w∞) = Awa

∞ since the denom-
inator only plays a minor role in (5.10). The ap-
proximation (5.11) is plotted as the black curve.
The red curve is an allometric fit to (3.60) plotted
using the prefactor from (5.11).

In figure 5.3 κcrit is plotted (blue curve) against w∞ using relation (3.60). It is
seen that we almost get a straight line in a loglog plot since the denominator only
plays a minor role. We may thus approximate (5.10):

κcrit,approx(w∞) =
δηλ+r−q−2

αγ
√
2πσβ2−λ

i exp
[
1
2σ

2
i (2− λ)2

]wλ+r−q−2
∞ (5.11)

where (3.60) has been used to express κcrit in terms of w∞. Figure 5.3 illustrates
(5.11) in the black curve. It is, however, seen that a better approximation is obtained
(red curve) if a scaling of 0.239 is employed instead of λ+ r − q − 2 = 0.23.

Steady-State

The plot in figure 5.4 shows the case of a steady-state solution. In the plot we see
that individuals pile up just after maturation since food is too scarce to allow them
to grow to w∞. This is seen by noting that Ψ(w) < 1 after maturation, which means
that the individuals are not even capable of spending the desired amount of energy
on reproduction; clearly this leaves no energy for growth as discussed in section 3.3.
In section 5.2.3 (cf. figure 5.14(b)) we see that individuals are not allowed to grow
to w∞ in the steady-state region.

Single-Generation States

Figure 5.5 shows a single-generation cycle. We note that the background is in a
steady-state (very low amplitudes), but that the spectrum of the species fluctu-
ate. The fluctuations are caused by cannibalism that influences the size-dependent
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Figure 5.4: Steady-state solution. Boxplot (cf. also figure 5.5) of species and background
spectrum (grey) from time t = 200 to t = 300 years. Since we are in steady-state both
spectra are constant over time. The gray shaded area marks the region of matured individuals
(ψ(w) ≥ 0.5). Insets on the left show time evolution of reproduction, total species biomass,
total background biomass, and total biomass consisting of both the species and the background.
Insets in the upper right corner show boxplots of the feeding level, and the effective reproduction
selection function. These boxplots are naturally also constant in steady-state. We see that
the somatic growth goes to zero just after maturation since not even the required energy for
reproduction can be covered (Ψ(w) < 1 after maturation). That somatic growth goes to
zero means that individuals pile up just after maturation, which is reflected in the peak in the
spectrum. Parameters: r0 = 1gb/year, κ = 10−3 g1+λ/m3, and w∞ = 10 kg.

growth, mortality, and reproduction of the species. These states are termed single-
generation states because their period length is correlated with species generation
time from birth to w∞.

To understand the single-generation cycle better we have zoomed in on a period
from a biomass evolution top in figure 5.6. The figures show abundance spectra
at various time steps. When the cycle starts at the biomass peak the intermediate
size range of 10 − 300 g has a low abundance level. As time passes a cohort grows
into the intermediate range and we arrive at the valley of the biomass evolution
(figure 5.6(a)). The abundance in the intermediate range has now increased and as
time passes the individuals in the cohort grow larger and pile up at wmat where the
growth goes to zero. As they grow they put a higher and higher predation pressure
on individuals in the intermediate size and forces the abundance down to the level
at the beginning of the cycle. Now one cycle has been completed, and the process is
repeated. The diet from cannibalism is most pronounced when we are in a biomass
valley: here the big matured cohort feast on the abundant intermediate individuals
and thus depletes them to start a new cycle.

It is noted that the spectrum cycles naturally causes cycles in the reproductive
flux since the cycles changes the spectrum composition, and thus also the Spawning
Stock Biomass (SSB). Size-dependent interactions at larger size-classes thus affect
the entire spectrum via reproduction.

We see the largest effect of the single-generation cycle in the intermediate and
large size-range since smaller individuals have smaller energy requirements and more
available food from the background, and are thus not capable of starting a cycle.
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Figure 5.5: Single-generation cycle. Boxplot notation (cf. also figure 5.4): square boxes show
the 25% (lower end) and the 75% percentiles (upper end) of the spectrum time series. The
thicker vertical line in the boxes are the median (50% percentile). The dashed bars show
the minimum (0% percentile) and maximum (100% percentile) of the time series. The thick
continuous line shows the mean spectrum. As in the steady-state solution the somatic growth
goes to zero upon maturation since food resources are too scarce to allow full reproduction. The
amplitude of the species biomass evolution dominates over the background biomass evolution –
meaning that the species biomass are in phase with the total biomass. Actually the background
fluctuations are almost non-existing (in steady-state) and their low magnitude makes them
non-existing in the boxplot of the background spectrum (grey). Parameters: r0 = 10 gb/year,
κ = 1.5 · 10−4 g1+λ/m3, and w∞ = 10 kg.

From this discussion it should be clear that species with large w∞ show single-
generation behaviour in a larger parameter space as also discussed when treating
the map of the one-species dynamics (section 5.2.3).

From the upcoming discussions in section 5.2.3 on the dynamic map in figure
5.2 we will find that removing cannibalism has the effect of removing the single-
generation states. However, when adding more species to the system they may
effectively cause single-generation like cycles since their predation influences the
size-dependent mortality and hence also growth and mortality.
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Figure 5.6: Single-generation cycle originating from intra-species (cannibalism) interaction.
The plots show abundances per volume in logarithmic evenly distributed size bins. The state
depicted is the state from figure 5.5. (a) From top to valley in the biomass evolution (figure 5.5).
Individuals starts occupying the intermediate size range. (b) Valley to top in biomass evolution
(figure 5.5). Individuals from the intermediate size range become dominating predators and
forces the abundance level in the intermediate size range down.

Predator-Prey States

Figure 5.7 shows an example of a predator-prey cycle. Predator-prey cycles oc-
cur when the functional response, or feeding level in the model at hand, sati-
ate. Predator-prey cycles are characterised by the fact that the predator and prey
biomasses are out of phase. Remember the example of the Canadian hare-lynx
cycles based on data collected by Hudson’s Bay Company that illustrated that
when lynxes are abundant they deplete the hares, which then lowers the numbers
of lynxes, which again causes hares to become abundant again and closes the cyclic
loop (Leigh (1968)).

The predator-prey cycle looks like a mixture of a single-generation cycle and a
normal unstructured predator-prey cycle where high resource abundance is followed
by high predator abundance, which then depletes the resource, so that the number
of predators starts decreasing and enables the start of a new cycle when the prey
recovers. In the structured modelling regime the predator-prey cycle is however
a bit more complex, and is not easily depicted in a 2D plot. However the above
discussion of the single-generation cycle and the following description should enable
an understanding of the nature of the predator-prey cycle. In the example of fig-
ure 5.7 the predator-prey relation is most pronounced in the 0.1 − 1 g size range.
High levels of resources allow a cohort of recruits to leave w0 quickly, but soon too
many intermediate sized individuals depletes the resources so that new cohorts are
hindered by having low growth rates due to scarce food resources. Cannibalism
amplifies the problem for a new cohort since the low resource abundance causes the
diet of the old cohort to be dominated by cannibalism meaning that individuals of a
new potential cohort are prevented from forming a new cohort due to cannibalistic
mortality. A new cohort is allowed to be formed when the old cohort has decreased
in numbers due to mortality and grown upon the range where its diets lie in the
0.1− 1 g range. When this happens the resources has recovered and the cycle starts
over.

Increasing κ increases the level of fluctuations (cf. section 5.2.3) which is why

Coexistence in size-structured ecosystems M. Pedersen, Friday 28th July, 2006



64 5: The Single-Species Model

Figure 5.7: Predator-prey cycle. Boxplot notation are found in figure 5.4 and 5.5. In this state
both the species and the background spectrum fluctuates, but much faster than in the single-
generation example. It is seen that the background biomass fluctuations dominate since they
are in phase with the total biomass evolution. The increased food availability from increased
κ allows the species to grow beyond the size of maturation and reach the ultimate size of w∞.
Parameters: r0 = 1gb/year, κ = 0.1 g1+λ/m3, and w∞ = 10 kg.

predator-prey cycles are also denoted paradox of enrichment cycles since these cycles
may lead to stochastic extinction for increasing κ due to low abundance levels in the
valleys of the cyclic solution. We see that the level of depletion of the intermediate
size range in the predator-prey cycle in figure 5.7 is extreme. However, unlike in
the case of large fluctuations in unstructured models this does not mean that the
species is vulnerable to stochastic extinction since individuals in other size ranges
are present at normal abundance levels.

In the size-structured modelling regime one should not put too much into the
notion of predator-prey cycles since these naturally also show fluctuations in the
spectrum composition. Predator-prey interactions will even assist in generating the
fluctuations since the interactions are size-dependent and will have effects on size-
dependent growth, mortality, and reproduction of the interacting species. However,
such fluctuations might also have a damping effect on the predator-prey cycles.

5.2.2 Comparison of Dynamic States & Single-Species Spectra

Figure 5.8 shows mean value plots of the abundance and biomass spectrum from
the time-series of the three states described above. We see that the abundance is
a decreasing function due to mortality with a small pile-up at intermediate and
matured size classes due to reduced growth rate. The biomass spectrum of the
species on the other hand is an increasing function (consistent with the results
from section 5.1 plotted as the red curve). This means that super-individuals in
logarithmically evenly distributed size-classes gain more weight from predation than
what is lost via mortality. In the current example only the background mortality is
present, but still the results are consistent with the theoretically predicted steady-
state solutions of a simpler sub-model of the model at hand (cf. section 5.1).

Figure 5.9 relate the steady-state solution to empirical data. We see that even
though North Sea cod is an exploited species it is still well-represented by the
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(a) (b)

Figure 5.8: Mean values of 180 years of the three different type of states. Red curve is
the single-species spectrum (5.4) with w∞ = 10 kg, µ0 = 0, and a = 0.6. (a) Abundance
density in logarithmically evenly distributed size classes. (b) Biomass density in logarithmically
evenly distributed size classes. The predator-prey state has the highest biomass followed by
the steady-state and single-generation states due to a higher κ value (cf. figure 5.2).

steady-state single-species spectrum. This is no surprise since industrial fishing
may be regarded as an increased background mortality for fishes above a given size
threshold. According to (5.4) this will change the cut-off of the spectrum, but leave
the scaling slope unaffected. The data gives a small, but inconclusive, indication
that some pile-up occurs after maturation. By comparing the biomass and SSB
curves we see that some extra biomass seems accumulated as maturity is reached.
However, this indication is quite weak, and more data below maturation is required
for a conclusion. That the accumulation seems weak indicates that in the case of
limited food individuals will not spend as much energy as possible on reproduction,
and nothing on growth; so an advancement of the growth model that will still
allocate some energy for growth in scarce food conditions might be necessary for
more realism.
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Figure 5.9: (a) Biomass composition of North Sea cod in the fourth quarter of 2004. Each
data point marks the year class starting at age 0. Data from ICES (2005). (b) Data made
size-bin independent by division with ∆w, and transformed to a density by division with w.
The red curve is a fit to a w∞ = 18 kg single species spectrum. (c) Results from (b) multiplied
with w2 to obtain the biomass density in logarithmically evenly distributed size-classes.
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5.2.3 The Map of Dynamics: Detailed Discussion

In this section we will describe more carefully how the map of the dynamics in figure
5.2 has been created. It is also discussed how the map will change for different values
of w∞, and how changing the growth function for the background resources will
affect the dynamics. After this we will treat enrichment and find that the transition
from steady-state to predator-prey states is abrupt due to a bifurcation.

Construction of the Map of the Dynamics

The map of the dynamics in figure 5.2 are created with a 10 kg species and the
default parameters given in section 3.6. In the analysis we vary the population
growth rate pre-factor r0 (cf. (3.55)), and the carrying capacity κ (cf. (3.55)) in
the semi-chemostatic growth function (3.54). The last 100 years of a simulation
was used to make the figures. Spectrum deviation is calculated using the standard
deviation nσ(w) and mean value n(w) over time t:

Spectrum deviation =
1

M

∑
w

100
nσ(w)

n(w)
(5.12)

whereM is the number of points in the discrete species spectrum. Biomass deviation
is calculated using:

Biomass deviation = 100
Bσ

B
(5.13)

Figure 5.10 shows the results from these calculations where the dark blue areas
represent extinction, blue areas equilibrium, and other colours represent the mag-
nitude of oscillation. The figure shows that the transition to predator-prey cycles
is quite abrupt, whereas the transition from steady-state to single-generation states
is more gradual. In figure 5.11 we see that increasing the values of κ and especially
r0 has the effect of enabling the species to obtain a higher biomass; this is due to
increased abundance and supply rate of resources.
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Figure 5.10: Single-species dynamics with semi-chemostatic growth rate on the background
spectrum. (a) Spectrum deviation. (b) Biomass deviation. In both plots we clearly see that
the transition to predator-prey cycles is quite abrupt, whereas the transition from steady-state
to single-generation states is more gradual.
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Figure 5.11: Single-species dynamics with semi-chemostatic growth rate on the background
spectrum. (a) Mean biomass indicating that the biomass of the species is increasing with r0
and κ. (b) Mean biomass/κ showing that increasing r0 increases the biomass of the species
relatively to the available magnitude κ of resources.

From figure 5.12 we see that smaller species size w∞ increases the size of the
steady-state region. Predator-prey dynamics set in when the feeding level (3.61)
satiates for v(w)ϕi(w,N) ≫ Imax(w). From (3.35) and (3.62) it is known that the
encountered food from the background is v(w)ϕi,b(w,N) ∝ w2−λ+q = w0.77, and
from (3.63) that Imax(w) ∝ wk = w3/4. This clearly means that v(w)ϕi,b(w,N) ≫
Imax(w) is more easily fulfilled for large w meaning that species with large w∞ have
a narrower steady-state region. The total available food is ϕi(w,N) = ϕi,b(w,N) +
ϕi,c(w,N) where ϕi,c(w,N) is the food available from cannibalism. Small species
will clearly have less access to cannibalistic intake meaning that the tendency for
predator-prey dynamics is further enhanced for large w∞ species. For smaller species
the minimum required value of κ to allow existence decreases as the size of matura-
tion goes down, which is the size the background has to allow the species to reach
for persistence (cf. section 5.2.1).

Removing cannibalism has the effect of removing the region of single-generation
dynamics since cannibalism is the driver for pure single-generation dynamics (cf.
section 5.2.4). Removing cannibalism also widens the width of the steady-state
region due to decreased food availability ϕi(w,N) so that v(w)ϕi(w,N) ≫ Imax(w)
requires a larger value of κ to be fulfilled.

Changing the growth function for the background to logistic growth does not
have any influence on the qualitative behaviour for values of r0 = 1gb/year and
up (cf. figure 5.13). For smaller values the problems of slow recovery (cf. section
3.5.2) starts to play a role, and makes the growth function useless. The parabolic
growth function has the same qualitative behaviour as logistic growth, but with less
problems in the regime of low r0 values.

Figures 5.11 and 5.13 also show that semi-chemostatic growth has a stabilising
effect (larger region of steady-state) on the species dynamics compared to logistic
and parabolic growth. This is due to the fast effective population regeneration rate
(cf. section 3.5.2), and is consistent with the results in de Roos et al. (1990).
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Figure 5.12: Biomass deviation using semi-chemostatic growth rate on the background spec-
trum. (a) A smaller species of w∞ = 1kg increases the region of steady-state since predator-
prey dynamics set in more easily for larger species. The minimum required value of κ to sustain
the species also declines since it naturally has a smaller size at maturation (cf. (5.10)). (b)
A w∞ = 10 kg species is again studied, but its capability to cannibalise has been removed.
This increases the region of steady-states since the total amount of encountered food decreases
which again requires a higher κ to satiate the feeding level. In the centre of the steady-state
(blue) region small oscillations of both the background and the species occur. The lighter area
on the left is due to very long transients that, however, ultimately do end up in a steady-state.
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Figure 5.13: Biomass deviation. (a) Logistic growth. From at least r0 = 1gb/year and up
the model expose the same behaviour as the semi-chemostatic model. The different behaviour
at low r0 is due to the very slow regeneration rate upon depletion (cf. section 3.5.2). In
the lower-right region this even leads to extinction because of the added effect of enrichment
which destabilises the system and thus puts more severe regeneration requirements on the
background. In natural systems we expect r0 ∈ [0.6; 19] gb/year. (b) Parabolic growth shows
the same qualitative result as logistic growth. In the lower region of r0 parabolic growth is,
however, capable of maintaining steady-state.
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Paradox of Enrichment in the Size-Structured Model

Figure 5.14(a) shows an example of a vertical line in the dynamic map in figure 5.2.
From this we see that the predator-prey dynamic set in in a bifurcation, which is
why the transition is so abrupt. The bifurcation is due to satiation of the functional
response, the feeding level in the current model, and is known as the paradox of
enrichment (Rosenzweig (1971)). In the size-structured model we furthermore note
from figure 5.14(b) that the species does not have enough food intake to obtain the
ultimate size of w∞ before the predator-prey region.

From the discussion on the predator-prey states in section 5.2.1 we furthermore
note that the paradox of enrichment is not as critical in size-structured as in unstruc-
tured models. In unstructured models a species may go extinct due to stochastic
extinction in the valley of a cycle when the amplitudes of the predator-prey cycles
become very large. This is not necessarily the case in size-structured models since
the cycles here mostly are the result of interspecies fluctuations, so that even though
some size-classes is depleted the species is still invulnerable to stochastic extinction
since other size-classes are abundant.
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Figure 5.14: Effects of enrichment using default parameters and w∞ = 10 kg. (a) Biomass
deviations as a function of κ. Mean biomass (black), local maxima (blue), and local minima
(red). In the non-normalised plot only the global extremes are plotted. We see that predator-
prey dynamics set in in a bifurcation. In the normalised plots we also see deviations for small
κ, but these are noise from the low biomass level. (b) The maximum size an individual obtain
for varying κ. We see that food abundance is too scarce to allow the species to reach w∞ in
the steady-state region.

5.2.4 Cannibalism

In this section we will treat the role of cannibalism further. Claessen et al. (2004)
provides an extensive review of cannibalism in population models. Claessen et al.
(2004) characterise cannibalism by i) victim mortality, ii) energy gain from victims,
iii) size-dependent interactions, and iv) intraspecific competition. Claessen et al.
(2004) attribute five effects to cannibalism: i) regulation of population size, ii)
destabilisation of steady-states to cycles or chaos, iii) stabilisation by damping cy-
cles caused by other interactions, iv) bistability; depending on initial condition the
population may converge to one of two stable states, and v) modification of popu-
lation size structure. Claessen et al. (2004) conclude the Physiologically Structured
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70 5: The Single-Species Model

Population (PSP) modelling framework to include all characteristics and effects,
and hence the same is valid for the framework of this thesis.

Effects i), v), and iv) will be identified in the next section in figures 5.17(a),
5.16, and 5.19. Effect iii) cannot be identified from the dynamic map in figure 5.2
(cf. also section 5.2.3) and is not demonstrated here. Interactions from other species
may however i.e. cause oscillations, which can be removed by cannibalism. Effect
ii) will be demonstrated in the following.
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Figure 5.15: Diagrams of relative magnitude oscillations. Biomass deviations as a function
of cannibalism θcan. Mean biomass (black), local maxima (blue), and local minima (red). In
the non-normalised plot only the global extremes are plotted. (a) Analysis of a steady-state
(no cannibalism) that becomes a predator-prey state. Parameters: r0 = 10 gb/year, κ =
10−3 g/m3, and w∞ = 10 kg. (b) Analysis of a steady-state (no cannibalism) that becomes
the single-generation state from figure 5.5. Parameters: r0 = 10 gb/year, κ = 1.5 ·10−4 g/m3,
and w∞ = 10 kg.

Figure 5.15 shows two examples of cannibalistic destabilisation of steady-states.
From the dynamic map in figure 5.2 it is seen that full cannibalism in the final state
of figure 5.15(a) is a predator-prey-state, and that the resulting state in (b) is a
single-generation state, which in agreement with previous discussions clearly is seen
introduced by cannibalism. From the discussions on the dynamics map in figure 5.2
we know that the transition from steady-state to predator-prey states is abrupt due
to a bifurcation. In (a) we clearly see this abruptness in the biomass evolution when
cannibalism is introduced, whereas the transition in (b) is smooth (black curves).

The transition from zero to full cannibalism takes places through a series of
bifurcations as seen in figure 5.15(a). First small-scale (< 5%) oscillations set in
followed by large-scale oscillations (up to 25%). At intermediate degrees of canni-
balism we might have steady-states meaning that intermediate levels of cannibalism
might not necessarily enhance the paradox of enrichment. In (b) there is only one
pronounced bifurcation, which gradually leads to large-scale oscillations of up to
15%. The three local maxima (blue) around a 0.3 degree of cannibalism is due
to introduction of small biomass evolution peaks in the valleys of the dominating
peaks, and the bifurcation responsible for these does not seem to have a strong effect
on the dynamics.
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5.2.5 The Role of Background Length and w∞

In the previous no cut-off wcut was employed on the background spectrum meaning
that the background spectrum was extended throughout the species spectrum to
supply food throughout the species spectrum. However, in this section we use the
default cut-off of wcut = 0.05 g (section 3.5.1). Since individuals are feeding with
a preferred prey-predator ratio of β = 0.01 this means that the available resources
will start decreasing as the predator grows beyond 5 g. However, food will still be
available via the log-normal food selection function (3.65) due to the selection width
σ. In this section we will examine how large w∞ that can exist for the given cut-off
wcut.

In the examination we will also find that cannibalism give rise to bistability in
the model. Depending on the initial species spectrum two different states might be
reached. Either a state (mostly steady-state) with a low biomass level, or a high
biomass state that is cyclic. The high biomass state is propelled by cannibalism,
and is reached by having a high biomass initial spectrum since a given spectrum
structure is needed to enter the high biomass cannibalistic driven state.

Determining w∞,max

Figure 5.16 shows the resulting species spectrum from different simulations with
differing w∞. All spectra come from steady-states. We see that the species have
decreasing densities at w0 for increasing w∞ as we expect from the discussion on
steady-state solutions in section 5.1. However, we expect slopes of −k−a ≈ −3/4−
0.6 = −1.35 of the single species spectra. If regression lines are made only the
three smallest cannibalistic species have comparable slopes of [−1.35; −1.23]. The
w∞ = 280 g species has an incomparable slope of −0.66 due to severe food limitation
as wmat is approached. The non-cannibalistic species have slopes of [−0.55; −0.15].
Thus also only the three smaller cannibals come close to obeying the (5.6) scaling of
K(w∞) ∝ w−0.73

∞ with their scaling exponent of −0.57. The cannibals’ spectra come
closer to the theoretically expected since they come closer of having feeding items
of suitable size range throughout their life. Thus, when more species are added to
the spectrum even non-cannibals are expected to have spectra comparable to the
predicted steady-state spectra.

It may at first seem counterintuitive that the cannibalistic species have the
highest densities at the smaller size ranges, since the densities could be lowered
by cannibalistic predation. However, cannibalism has the effect that the increased
food abundance from cannibalism makes it possible to produce more recruits. Fur-
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72 5: The Single-Species Model

thermore, more resources will be available from large-sized resource items since
competition for these resources are lowered since larger species retrieve parts of
their food from cannibalism.

We may predict how large species that are capable of persisting in a system with
a given cut-off wcut. A species has to have a feeding level upon maturation that
exceeds a critical feeding level of (5.8) with ∀w : ψi(w) = 0:

fcrit(wmat;w∞) =
δwr

mat

αhwk
mat

(5.14)

The realised feeding level due to background resources is calculated via (3.61):

frea(wmat, nb;w∞) =
v(wmat)ϕi(wmat, nb)

v(wmat)ϕi(wmat, nb) + Imax(wmat)
(5.15)

Thus from frea(wmat, nb;w∞) ≥ fcrit(wmat;w∞) we may retrieve the maximum
wmat or w∞ via (3.60) that is capable of persisting when resources from the back-
ground is dominating. An analytic solution for w∞ by setting frea(wmat, nb;w∞) =
fcrit(wmat;w∞) is not possible since the available food from a truncated background
spectrum ϕi(wmat, nb) is a function of the error function erf(·). In figure 5.17(a)
(left axis) fcrit(wmat;w∞) (red) and frea(wmat, nb;w∞) (blue) are plotted.

Figure 5.17(a) (right axis) shows the biomass level for varying w∞ using a step-
ping function at wmat for the reproductive selection function ψ(w) (black curves).
We see that the maximum w∞ species that can exist with the given wcut is explained
by frea(wmat, nb;w∞) = fcrit(wmat;w∞). The green curves show the biomass for
varying w∞ using the gradual Fermi-Dirac distribution (3.59). We see that larger
species can exist with the smooth ψ(w) since some individuals here mature before
wmat.

From figure 5.17(a) we see that the same pattern is seen from a cannibalistic
species. We might expect that cannibalistic species could persist with larger w∞.
From figure 5.8(b) and section 5.1 we know that the biomass density in logarithmi-
cally evenly distributed size-classes is an increasing function for the single species
spectrum. Prey are selected with the log-normal selection function (3.65) mean-
ing that larger size-classes have to cannibalise on size-classes with lower biomass
densities than themselves, which clearly does not allow the cannibals to exist in
a steady-state at larger w∞ since the maintenance requirements scale with body
weight and thus also biomass.

Figure 5.17(a) has been produced with the default value for the magnitude κ
of the background spectrum (section 3.6). If κ is increased more food will be
available, and we will expect that species with larger w∞ can exist since an in-
creased amount of food clearly will give an increased frea(wmat, nb;w∞) (5.15).
The reverse is naturally expected for lower κ values. In figure 5.17(b) the maxi-
mum w∞ species that can exist for a given κ has been retrieved numerically from
frea(wmat, nb;w∞) = fcrit(wmat;w∞) (black curve) and we see that w∞,max(κ) in-
deed is an increasing function. To find the maximum w∞ with the smooth ψ(w)
(3.59) simulations were carried out for 25 different w∞ close to the biomass col-
lapse. From these simulations the maximum w∞ was found, and the result from
this investigation for nine values of κ is illustrated with the red curve in figure
5.17(b).

The red curve is shifted to higher κ values compared to the theoretically devised
(black). This shift is due to the fact that we strictly should require frea(wmat, nb;w∞)
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Figure 5.17: (a) Blue and red curves (left axis) show realised and critical feeding level at
wmat for varying w∞. Black curves (right axis) show biomass levels in the steady-state for
cannibals (solid) and non-cannibals (dashed) using a step function at wmat as the reproductive
selection function ψ(w). The green curves show the corresponding biomass levels when the
smooth reproductive selection function ψ(w) (3.59) is used. Larger w∞ is possible with the
smooth ψ(w) since some individuals matures below wmat. Maximum w∞ ≈ 630 g. (b) The
maximum w∞ cannibalistic species that can exist for a given magnitude κ of the background
spectrum. The black curve is for a stepping function, and the red using the smooth (3.59)
reproductive selection function. The resulting states are mainly steady-states that of course
becomes cyclic with enrichment when the feeding level satiates. The red region marks a region
where alternative states are possible. These dwarf-giant cyclic states are driven by cannibalism
and may be emerged if the simulations are started with a high total biomass of the species
spectrum. The boundaries between the different regions are only approximate since no full
analysis for all parameter combinations were carried out. The points marked with × were used
to draw the boundaries.

> fcrit(wmat;w∞) to allow room for reproduction – a higher κ is required for a given
w∞. However as κ increases the red curve exceeds the black due to the before men-
tioned width of the gradual reproduction selection function ψ(w) (3.59).

Species having w∞ above the red curve in figure 5.17(b) will naturally go extinct,
and species with a w∞ on or below the curve will be in a steady-state in a large
range of κ. However for increasing κ cyclic states emerge due to satiation of the
feeding level (paradox of enrichment, section 5.2.3). The parameters γ and h are
important parameters for the location of the steady-state to cyclic boundary since
predator-prey states set in when the feeding level (3.61) satiates.

Bistability from Cannibalism

Above we argued that cannibalism will not allow species to exist in steady-states
with larger w∞ than the non-cannibals for a given κ. However, a cyclic state where
reproduction is cyclic due to cohorts growing beyond wmat, may produce such states
since the matured cohort may be kept alive on cannibalistic intake. Such states are
denoted dwarf-giant cycles (Claessen et al. (2000)) since cohorts might be able to
grow just to wmat if the food from cannibalism is limited, or closer to w∞ if sufficient
food is available.

In figure 5.17(b) a red region of bistable cyclic states is found. These states are
cannibalistic dwarf-giant cycles which may be reached if the simulation is started
with a high initial biomass of the species. We see that the red region below the
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Figure 5.18: Depending on initial conditions one of two different states are reached. The
boxplot shows the dwarf-giant cyclic state due to high initial total biomass of 1 g/m3. The
red spectrum in the plot is the steady state from a low initial total biomass of 10−4 g/m3.
Apparently it seems that the steady state persists with no matured population, but the small
pile-up do indeed fall into the range where the Fermi-Dirac distributed maturation function has
increased from zero ψ(w) > 0 (3.59). The gray-shaded area marks the transition where 50%
of all individuals at size w have matured: ψ(w) = 0.5. Boxplot notations are found in figure
5.4 and 5.5. Parameters: r0 = 1gb/year, κ = 3 · 101 g1+λ/m3, and w∞ = 11.390 kg.

red line marks a region of bistable states, where we can either have low biomass
solutions or high biomass dwarf-giant cycles. Figure 5.18 shows an example of such
two states.

The bistable region above the red line allow presence of species that for low
initial biomass spectra will go extinct due to too low food abundance. However,
when starting the simulation with a high biomass spectra the alternative cyclic
state may be reached. Thus the criterion for entering a dwarf-giant cycle is that it
is introduced at a high concentration or that it may eat its way to a proper density
distribution on alternative food items such as other species. That the ladder is
possible is shown in section 6.2.2. Figure 5.19 shows that the alternative dwarf-
giant states indeed allow species with a larger w∞ to exist for lower values of κ.

It is noted that the bistable region only is present for large species. This is due
to the fact that cannibalism is more helpful for larger species. If an individual is not
cannibalised before it has reached a larger size then it has obtained a higher energy
content, which the cannibal cannot encounter from any resources due to its size
selective prey-predator ratio β. This gives the large individuals the required energy
for reaching maturation. The effect of sparing victims till they have become more
nutritious is known as the Hansel and Gretel effect (Claessen & de Roos (2003)).
The effect is not due to any individual choice or strategy, but merely dependent on
the species spectrum distribution.

It is difficult – if at all possible – to separate the dwarf-giant and the predator-
prey states from section 5.2.1. Apparently, only the dynamic map in figure 5.17(b)
can be used to separate the states. Separation might, however, not be impor-
tant since predator-prey states as discussed earlier have a different nature than
the unstructured models’ counterparts. In the size-structured modelling regime the
inter-species cohort fluctuations give rise to total biomass cycles on top of – or
counteracting – the predator-prey contribution.
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Figure 5.19: Enrichment study for a w∞ = 11.390 kg species. (a) The transition from
extinction to steady-state with a low initial biomass spectrum. It seems that the transition
takes place through a series of bifurcations indicating that the dynamic map in figure 5.17(b)
indeed only is approximate. The upper right region of 5.17(b) is difficult to assess due to
dynamic richness. However, we do see the general trend that increased κ allows the species
to reach a higher biomass. (b) The transition from extinction to dwarf-giant cycles with a
high initial biomass spectrum. At κ ≈ 3 · 10−2 g1+λ/m3 the intake from the background of
the smaller individuals is high enough to allow the species to persist via cannibalism in the
larger size range. At κ ≈ 10−1 g1+λ/m3 another bifurcation takes place. The nature of this
bifurcation has not been examined.

Summary

To sum up this section we have seen that the maximum species size w∞ that can
sustain in a system where the background spectrum has been cut off is a function of
β, but that species beyond w∞ = wcut/β may persist due to the width σ of the size
selection function. The ultimate size that can persist in the system have a realised
feeding level at maturation size that comes close to the critical feeding level. The
maximum w∞ species that can exist with the default parameters (section 3.6) for
varying κ can be found in figure 5.17(b).

Alternative states are also possible. If the initial spectrum distribution has a
high enough magnitude then alternative dwarf-giant states might be reached. These
states are driven by cannibalistic intake, and allow species with higher w∞ to exist
than if a low magnitude intial spectrum is used.

5.2.6 Model Dynamics vs. Dynamics in Nature

In the previous sections we have surveyed the different kinds of dynamics that the
size-structured model expose. It was found that cyclic states show fluctuations in
the spectrum composition in the form of cohorts. Figure 5.20 shows that cycles of
advancing cohorts do indeed occur in nature. The figure shows relative differences
from year to year in the Norwegian cod composition, which displays cohort cycle
behaviour. Whether the cohorts are from single-generation, predator-prey, dwarf-
giant cycles or a mixture from more complicated interactions is difficult to tell.
However, the long period time indicates that it might be closely related to the
single-generation cycles.

Empirical evidence from Kendall et al. (1998) show that population cycles are
indeed common. Among fish almost half of the recorded populations are cycling.
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Kendall et al. (1999) provides methods for studies and validates mechanisms for
cycling. Murdoch et al. (2002) examines how often different cycles occur. They find
that predator-prey cycles almost only occur in specialist predators and that single-
generation and delayed-feedback cycles (I do not differ between these cycles in this
thesis) are normal for generalists, which covers most fish species. That specialists
should expose more predator-prey dynamics is also what we would expect since
specialist interactions have stronger interactions that cannot be damped through
other links (McCann et al. (1998)).

From the discussions in this chapter it is evident that the size-structured model
indeed is capable of producing dynamics that are consistent with the dynamics
observed in nature.

Figure 5.20: Relative differences in the average
distribution in the Norwegian cod spectrum com-
position (in cm) from 1913 to 1933. It is seen
that cohorts are advancing in time and is being re-
placed by new dominating cohorts. The graph is
taken from Sund (1934). It might be interesting
to do a similar study today to see how industrial
fishing has affected these cohort cycles.
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6
Multi-Species Coexistence
Using the Trophic Ladder

The size-structured model from chapter 3 does not include any explicit description
of a food web structure. Everybody can eat everybody if they fall into a suitable
size range. In this chapter it is shown that we may have species coexistence in this
completely mixed environment setting. In chapter 7 we initiate examinations of
how an actual food web configuration enhances the possibilities for coexistence.

Larger species need the possibility of feeding on smaller species to reach the
size of maturation, which is clearly required for a species to maintain itself. This
mechanism is treated in this chapter and is denoted the trophic ladder. Section 6.1
is an introduction to the concept of the trophic ladder, which is examined in detail
in section 6.2 where it is also found that species may be present in between the
steps of the trophic ladder. Examples of coexistence of up to six species are given.
Perspectives for even more coexisting species without introducing an explicit food
web structure in the size-structured model are discussed in the last section 6.4.

6.1 Coexistence by Just Adding More Species?

The simplest thing that can be done to start studying coexistence in the model
from chapter 3 is to add more species. The only trait that characterises a species
is the ultimate size w∞. The first experiment will be to add 100 species with
logarithmically evenly distributed w∞ in the range 1 g–19 kg and see what happens
when a simulation is started.

Figure 6.1(a) shows the result of this experiment. The figure shows the time
evolution of the biomass of the 100 species. First a ∼ 1000 years transient is seen
where two clusters of species of high biomass evolve towards smaller sizes. When
the smaller cluster reaches 1 g it is being excluded by the larger size cluster that
predates heavily on the smaller cluster since the larger cluster consists of species of
a size that cannot exist purely on the background spectrum. Species in the larger
size cluster around 103 g cannot sustain without the smaller species since the prey-
predator ratio β and the width σ of the size selection function (3.65) does not allow
them to feed on the background (cf. figure 5.17). When the smaller cluster is being
excluded a niche for a new smaller cluster has appeared in the 101 g–102 g range.
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Figure 6.1: Time evolvement of biomass (per volume) distributions for 100 species logarith-
mically evenly distributed in the range [1 g; 19kg]. (a) Using default parameters (section 3.6).
Two distinct size clusters are seen to evolve towards smaller species sizes. When the clus-
ter of the smaller species come close to 1 g it goes to a low biomass and a new smaller size
cluster is started in the 101 g–102 g range. The pattern is repeated with a period length of
∼ 11, 000 years. (b) A flux consisting of the spectrum of ni(w, t) = 10−14w−2 is added to
all species. This corresponds to a constant small inflow of the 100 species from a species
pool. It is seen that this mechanism speeds up the time evolution of the two size clusters to
∼ 700 years, and shows that the pattern from (a) is cyclic and not a long transient.

This niche is available since the potential larger predators are at a low biomass level.
The larger size cluster continues evolution towards a smaller size that can exist solely
on background resources. However, it is soon being excluded 1) by the smaller size
cluster that has a more appropriate prey-predator ratio of the background resources,
and 2) by a new larger size cluster that is being formed with a diet based on the
smaller size clusters. The two new size clusters now evolve towards smaller species
sizes and the process repeats itself.

This experiment can be seen as a succession experiment where the superior
species diminishes the less superior species. However, since all species are constantly
present then the diminished species will have the possibility of reemerging if their
surrounding environment consisting of the other species allows them to do so. In
natural systems it is not likely that the species will survive at the very small biomass
levels since they are very vulnerable to stochastic extinction. Instead we may regard
the very small biomasses as influxes from a surrounding species pool, and thus regard
the experiment as an invasion experiment. To study this more explicitly we repeat
the experiment with one modification. A small inflow of the 100 species is allowed
by adding the small amplitude spectrum ni(w, t) = 10−14w−2 to all species at each
time step. The result of this experiment is depicted in figure 6.1(b), and it is seen
that the same pattern is produced at a faster time scale. In the first experiment
computational time makes it difficult to determine whether the pattern is periodic.
The second experiment shows a period time of ∼ 700 years, and it seems that the
period time for the first experiment is ∼ 11, 000 years.

What does this experiment say about coexistence? We see that two distinct size
clusters can persist on a long time-scale, but that invasion or succession makes this
pattern periodic with evolvement towards smaller size-clusters, that are replaced
by two new size-clusters when these become superior. Thus it seems that species
can coexist 1) if they are very different in the form of a large difference in species
size w∞, or 2) if they are sufficiently similar in species size w∞. This result is
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similar to the recent result by Scheffer & van Nes (2006) who also in an invasion
experiment finds that species may co-evolve in clusters on an abstract niche axis.
The evolvement in Scheffer & van Nes (2006) is however not periodic, but instead
the clusters evolve along constant niche values. The niche axis of the Scheffer & van
Nes (2006) experiment corresponds to the w∞ axis in the current experiment, and
the clusters in Scheffer & van Nes (2006) thus do not evolve in the direction of the
horizontal niche axis.

Even though the experiment by Scheffer & van Nes (2006) gives results similar
to the current experiment the mechanisms behind are quite different. Scheffer &
van Nes (2006) examines an unstructured Lotka-Volterra competition model where
species with similar niche values compete strongest, and competition decreases for
species with quite different niche values. The competition strength is determined
by a normal distribution that has a width similar to the length of the niche axis
so that competition do exist between the clusters. Competition give rise to in-
creased mortality but no energy gain is coupled to the competition mortality. In
the size-structured model in this thesis competition is implemented in a more real-
istic manner. All species compete for the same background resources in the smaller
end of the species’ spectra. Also every species is capable of eating of any species’
individuals if they are of a suitable size. Thus smaller species have the advantage
that they can reach maturation solely on background resources and thus sustain
their populations. Larger species cannot do so due to the size selective predation
intake, which means that they must feed on other species to reach maturation. One
can say that the larger species must use the smaller species as a trophic ladder to
obtain the role of a large sized predator. The maximum species size that can persist
solely on background resources is discussed in section 5.2.5, and for the default pa-
rameters (section 3.6) the maximum size is approximately 630 g (cf. figure 5.17(a)).
Thus in the size-structured model the total competitive effect between species on
the w∞ axis is more difficult to asses since it is the result of size-dependent processes
throughout the lifetimes of the individuals in all species.

In Scheffer & van Nes (2006) the clusters exist in a long transient, and as time
passes each cluster is eventually constituted by just a single species. The very long
time-scales do, however, indicate that quite weak forces are sufficient for stabilising
the clusters, and indeed they show that self-interference competition stabilises the
clusters. Self-interference competition is basically a mortality term for a species that
increases with increasing population when the population exceeds a given threshold.
No other species gain energy from this term, which may thus be regarded as a
damper. The interference term can be thought of as a top-down control from natural
enemies that prevent the populations from becoming very abundant. It is also
argued that other weak forces stabilise the cluster pattern. Scheffer & van Nes
(2006) also carry out an evolutionary experiment where species can evolve along
the niche axis. Here it is seen that species do indeed evolve into clusters, so that
the clusters is a self-organised pattern.

In the experiment at hand the cluster width is stable due to the periodic pattern
that the concrete niche value w∞ give rise to. The pattern is robust. If the influx of
species i.e. is removed and a constant influx of w0 recruits is used the same pattern
is seen.

Omnivory – the case where a species feeds upon more trophic levels – is most
common in aquatic food webs (i.e. Pimm et al. (1991)). Everybody is capable of
eating everybody in the size-structured model if the victims are of a suitable size.
This an extreme case of omnivory since i.e. the anchovy like fish may predate on
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large cod like predator’s offspring. This clearly shows that one should be careful
when assigning species to trophic levels in aquatic ecosystems since the trophic
level is more closely linked to body size (Jennings et al. (2001)). However, even
in this everybody-eats-everybody scenario we see a division of species into clusters
that display a structure similar to the concept of trophic levels. Instead of being
the direct result of a who-eats-whom differentiation the ’trophic levels’ displayed
in figure 6.1 is the result of size-dependent processes where the smaller species are
required as a trophic ladder for the larger species.

In this chapter the concept of the trophic ladder in regards to species coexis-
tence is studied more thoroughly. In section 6.2.1 it is shown that two species, one
from each cluster, can coexist without any invaders present. It is also discussed
what combinations of small and larger species that can coexist. With this result
established it is shown that the trophic ladder indeed can lead to stable species
coexistence in the size-structured model. The stability of the coexistence is then
studied in regards to enrichment (section 6.2.2) which is clearly interesting since it
is food limitation that determines whether both the smaller and the larger species
can exist. Subsequently (section 6.2.3) it is shown that the pattern from figure
6.1 can be scaled to more than two ’trophic levels’, but that the presence of many
such ’trophic levels’ in nature is unlikely. In general two very alike species will only
exist in a long transient as in the experiment of Scheffer & van Nes (2006) since
the competitively superior eventually will outcompete the less superior. However
in section 6.3 it is shown that species with w∞ in between the species constituting
the trophic ladder indeed can coexist in stable states without any modifications of
the model. Finally the chapter is rounded off by a discussion on the perspectives
for more species coexistence in the model (section 6.4).

6.2 Coexistence Using the Trophic Ladder

In the previous section it was found that clusters of different w∞ sized clusters
coexisted over long time scales in an invasion experiment. In this section we will
describe the stable states that can be found in the absence of invasion.

6.2.1 Two Species Coexistence

From the clusters in figure 6.1 two species may be picked out, one from each cluster,
and it is seen that they can exist in stable states. Figure 6.2 shows the example of
a steady-state. It is easily tested that the larger species uses the smaller species as
a trophic ladder since it cannot exist if the smaller species is removed.

For a given size of the smaller species w∞,1 there is an upper level for the
size of the larger species w∞,2. The upper level is determined by the possibility
of reaching the size of maturation on the smaller species. We may regard the
smaller species’ spectrum as a continuation of the background spectrum and then
we can find the maximum w∞,2 by using the methods from section 5.2.5 where the
maximum w∞ that can exist for a truncated background spectrum is found. Figure
6.3(a) shows an example of two species’ capability of coexisting when the size of
the larger species is varied while the smaller is fixed at w∞,1 = 10 g. In the figure
it is seen that the larger species is close to its maximum size at w∞,2 = 19 kg since
the biomass starts dropping off dramatically. We see coexistence from w∞,2 = 400 g
even though species up to 630 g are capable of living solely on background resources.
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Figure 6.2: (a) Two species of sizes w∞,1 = 30 g and w∞,2 = 11.390 kg in a steady-state.
Without the smaller species the larger species cannot exist since it is needed as a trophic ladder.
(b) The biomass spectrum of the state in (a) in logarithmically evenly distributed size bins.
A pile-up of the larger species is seen at w ≈ 10 g, and is due to scarce abundances of food
items in the preferred size range of w = β · 10 g = 0.1 g. The dashed black curves show the
summation of the two species’ spectra.

The coexistence in the 400− 630 g is not due to the ’pure’ trophic ladder since both
species are capable of living solely on background resources in the absence of each
other. In section 6.3 it is discussed that states can exist in between the steps of
the trophic ladder. However, since species start suffering from reduced access to
background resources from a size of wcut/β = 5g the coexistence mechanism is
similar to the trophic ladder since the smaller species allows the species in the
400− 630 g to exist at a larger biomass level. From 630 g the larger species coexist
with the smaller due to the trophic ladder, and no lower level of the larger w∞,2

thus exist.
When the roles are reversed and the larger species is kept constant at w∞,2 and

the size of the smaller species is varied then both a lower and an upper level for
w∞,1 are present for coexistence. The lower level is due to the same mechanism as
before since a minimum size of the smaller species naturally is required for the larger
species to reach maturation. The upper level is a bit more complicated. Increasing
w∞,1 will decrease the magnitude of the species’ spectrum as predicted by K(w∞)
in (5.6) since the same amount of resources basically have to be distributed to
individuals over a larger size range. Thus the larger species will have access to less
food resources at a given size w, which may be insufficient for reaching the size of
maturation since the growth may drop to zero at an earlier stage since no excess
energy is available for growth once maintenance costs have been paid. This may
be illustrated by observing the biomass spectrum in figure 6.2(b) where it is seen
that individuals pile up around w ≈ 10 g due to scarce abundances of food items
in the preferred size range of w = β · 10 g = 0.1 g. If w∞,1 is increased further the
lower valley in the biomass spectrum will soon be too low to allow any growth of
the individuals that pile up, and once this happens the species can no longer exist.
Figure 6.3(b) shows an explicit example of the lower and upper level of the smaller
species for coexistence.
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Figure 6.3: Left axis: normalised biomass deviations; mean biomass (black), local maxima
(blue), and local minima (red). Right axis: Non-normalised plots where only the global extremes
are plotted. (a) The size of the larger species is varied while the smaller species size is fixed
at 10 g. The apparent coexistence in the 5 − 10 g range is only due to a long transient, and
ultimately only the 10 g species will be present. The plotted data are the last 150 years of a
2150 years simulation. When the larger species has the same size as the smaller species of 10 g
both species are naturally present at equal biomass levels since they then comprise the same
species. The larger species outcompetes the smaller species in the size range 10− 400 g. For
a large species size above 400 g both species are present. From 630 g and up the two species
coexist due to the trophic ladder, and it is seen that we are emerging the maximum size of the
larger species at 19 kg since the biomass level drops of. (b) The size of the smaller species is
varied while the larger species size is fixed at 7.5 kg. Below 3 g the the larger species is unable
to reach the size of maturation and is thus not capable of existing. The larger species in (a)
is close to this destiny at 19 kg. Above 3 g the larger species can exist by using the smaller
species as a trophic ladder. However, when the size of the smaller species exceeds 40 g the
larger species can no longer persist due to zero growth in some size range below the size of
maturation (see text). The smaller species is naturally capable of persisting with a size up to
630 g which is the maximum size that can exist on the truncated background spectrum (cf.
figure 5.17(a)).

6.2.2 Enrichment of the Two Species Trophic Ladder

Coexistence using the trophic ladder has now been demonstrated, and the require-
ments in regards to the ultimate body weight w∞ for two species to coexist have
been discussed. In the following the stability of coexistence of the trophic ladder in
response to enrichment is discussed.

Figure 6.4(a) shows the response to enrichment of the state from figure 6.2.
From the previous discussions it is readily understood why the smaller and larger
species is allowed to exist from two different levels of enrichment. The smaller can
exist when the resource abundance is high enough for it to reach maturation. The
larger species uses the smaller species as a trophic ladder and the smaller species’
spectrum magnitude increases with κ, and when the abundance is high enough as
discussed in the previous section the larger species can coexist. When enriching the
system further the steady-states becomes cyclic due to satiation of the functional
responses at smaller body sizes.

Continuing enrichment leads to species loss. From section 5.2.5 we know that
two different states are possible due to bistability at high levels of κ for the larger
species (cf. figure 5.17(b)). In the absence of the smaller species at high κ the larger
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Figure 6.4: Responses to enrichment. (a) Normalised (left) and non-normalised (right) biomass
deviations. A lower κ is needed for both the smaller and larger species to exist. When the system
is enriched further cycles are introduced to the system due to satiated functional responses at
the smaller body sizes w. At κ ≈ 9 · 10−2 g1+λ/m3 the smaller species is lost since the larger
species drives it out by entering the alternative dwarf-giant state (cf. section 5.2.5). Depending
on initial conditions the smaller species may even be excluded in the beginning of the * marked
region. The smaller species can be excluded at two different levels of enrichment due to
bistability. Figure 6.5 shows the two different possibilities, and (b) shows the biomass levels of
the two different states. The solid curves show the case where the large species is introduced
at high biomass level, and the dashed when it is introduced at a low level. It is noted that
the two states converge at the location of the extinction of the dashed state since the states
resulting from the two different initial conditions then both are the dwarf-giant state.

species may i) go extinct if the initial biomass of its spectrum is low, or ii) enter
a cyclic cannibalistic driven dwarf-giant state if its initial biomass is high. At very
high levels of κ the species may enter i) a steady-state, or ii) the dwarf-giant state.
The resulting state thus depends on initial conditions. In figure 6.4(a) both species
are introduced at a low biomass, but the larger species may in the transient increase
its biomass, enter the dwarf-giant state, and outcompete the smaller species since
the dwarf-giant state does not need the smaller species for existence.

The larger species may enter the dwarf-giant state at a lower level of enrichment
if the initial biomass of its spectrum is high. This gives two different routes to
extinction for the smaller species. Figure 6.5 shows a zoom-in on the region where
the extinction takes place in the two cases. When the large species is introduced at
a low level the dynamics undergoes a series of period-doublings before the smaller
species goes extinct. The extinction takes place in just a single bifurcation when the
large species is introduced at a high biomass. By comparison of the two plots with
figure 5.19(b) it is seen that the resulting state indeed is the dwarf-giant state, and
it is also noted that the bifurcation at κ ≈ 0.12 g1+λ/m3 is not due to inter-species
interactions, but a bifurcation in the dwarf-giant state. In figure 6.4(b) the biomass
levels of the two alternative routes are shown in the same plot for visibility.

It is interesting to note that the smaller species indirectly assists in its own
extinction. Without the smaller species the larger species could not enter the dwarf-
giant state, and thus it would not be possible for the larger species to drive out the
smaller before κ ≈ 3 g1+λ/m3 where the larger species is capable of surviving solely
on background resources (cf. figure 5.19(a)).

The results of this enrichment study is apparently equivalent to the result of
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Figure 6.5: Zoom-in on the * marked region in figure 6.4(a). (a) The route to extinction of
the smaller species when the species are introduced at low biomass levels (i.e. 10−10 g/m3),
and (b) when the larger species is introduced at a high biomass level (i.e. 1 g/m3). The high
initial biomass level allows the larger species to enter the dwarf-giant state at a lower level of
enrichment. Figure 6.4(b) shows the biomass levels from (a) and (b) in a combined plot.

Mylius et al. (2001) where an Intraguild Predation (IGP) system is studied. An
IGP system is a tri-chain system of a predator, a consumer, and a resource where
the predator is allowed also to feed on the resource. In the system of the current
experiment both consumers can predate on each other, and they are both canni-
bals. Experiments (results not shown) show that removing both the smaller species
cannibalistic behaviour and its capability of predating on the larger species does
not change the qualitative result of the experiment. However, removing the larger
species cannibalistic behaviour changes the result. The studied extinction points
are due to the cannibalistic driven dwarf-giant states, which naturally are absent
when cannibalism is not included. The smaller species is of course still driven to
extinction, but not until after κ ≈ 3 g1+λ/m3 where the larger species can live solely
on background resources. Before this point is reached the cyclic behaviour becomes
extreme. This means that the smaller species is driven extinct at a lower level of
enrichment when cannibalism is included.

Mylius et al. (2001) conclude that stable food chains cannot involve strong
competition between the intermediate consumer and the predator for resources since
this will drive the consumer to extinction over a large range of enrichment. The
experiment at hand shows that coexistence for the two considered species is possible
in the range [6·10−4; 9·10−2] g1+λ/m3 which does not seem too worrying considering
that the estimated value for a typical level of enrichment in a marine environment is
κ = 10−3 g1+λ/m3. If cannibalism is excluded coexistence is possible over an even
larger κ range. It should of course be noted that strong competition only is present
at the smaller size w stages. More worrying seems the lower level for existence
via the trophic ladder which is not too far away from the estimated typical value.
That the parameters of the model in principle easily can be compared to empirical
values is a strong advantage of this experiment. The experiment based on the size-
structured modelling framework includes more realism, and from the experiment
in this section it seems likely that strong competition for food items between a
predator and an intermediate consumer at smaller life stages indeed is possible in
natural systems. However, before making a final conclusion research should be put
into determining the range of expected values for κ in nature.
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6.2.3 Extending the Ladder to More Than Two Species

In this section it is shown that the pattern of the two evolving clusters from figure
6.1 can be extended to more clusters. Trophic ladders with three species in a steady-
state, and four species in a cyclic state are demonstrated. The ladder configuration
is studied in an enrichment experiment for comparison with the result from the two
species example.

By considering figure 6.1 smaller σ and β are clearly needed to have more than
two clusters in the used grid. The invasion experiment with a small species influx is
repeated in figure 6.6(a) with σ = 0.5 and β = 0.1. Still only two clusters are seen.
From the previous section it is known that food limitation can keep the number of
species down. Therefore the experiment is repeated with an increased enrichment of
κ = 0.1 g1+λ/m3. The result of this experiment is depicted in figure 6.6(b) where it
is seen that a more irregular pattern is produced, but that the start of a period show
three and the end of a period four ’trophic levels’. It is noted that the increased
food abundance speeds up the period length to ∼ 130 years.

The trophic ladder states may also be found by a simple algorithm. First a
trophic ladder state with a small larger w∞,2 species is found. Then a third w∞,3

species is added. If it outcompetes w∞,2 it is replaced with a larger species. This
continues till the third species is established. The process is now repeated for a
fourth species. It should be checked that the final state indeed is a trophic ladder
state. This is done by removing species w∞,n and observing that species w∞,m>n

goes extinct. Figure 6.7(a) shows that this indeed makes it possible to locate a three
species trophic ladder using the default σ = 1, β = 0.01, and a modest enrichment
value of κ = 0.01 g1+λ/m3. Using the smaller σ = 0.5, β = 0.1, and a higher level
of enrichment of κ = 0.1 g1+λ/m3 allowed location of a four species trophic ladder
state (figure 6.7(b)).

In figure 6.8 the four species state from figure 6.7(b) is used in an enrichment
experiment. As in the two species example it is seen that the species are allowed
existence subsequently for increasing food abundance. At high levels of enrichment
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Figure 6.6: The invasion experiment from figure 6.1 using σ = 0.5 and β = 0.1. Still
the 100 species are logarithmically evenly distributed in the range [1 g; 19kg], and an influx of
ni(w, t) = 10−14w−2 is added to each species’ spectra at each time step. (a) The smaller σ and
β still only provides two distinct size clusters. (b) The system is enriched to κ = 0.1 g1+λ/m3,
which speeds up the period time to ∼ 130 years. The cluster pattern becomes more irregular,
but provides hope of finding trophic ladder states with at least three to four species.
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Figure 6.7: Examples of trophic ladder states with more than two species coexisting. The
states were found with the search algorithm described in the text. (a) Three species of w∞ =
{1 g, 900 g, 9.5 kg} in steady-state. Parameters: σ = 1, β = 0.01, and κ = 0.01 g1+λ/m3.
(b) Four species of w∞ = {1 g, 50 g, 250 g, 5 kg} in a cyclic state. The plotted spectra are the
mean spectra of the time series. Parameters: σ = 0.5, β = 0.1, and κ = 0.1 g1+λ/m3.

a species is lost. Further enrichment does not lead to more species loss, but cascades
take place where the extinct species changes to another.

It is not likely that the trophic ladder mechanism is responsible for major parts
of the biodiversity that is seen in nature since this would require many ’trophic
levels’. And if the trophic ladders should account for many species large values
of κ would be required. However, the trophic ladder states may play a role in the
structure of size-structured food webs. The trophic ladder can be seen as a food web
structure that emerges from lower level processes and assists in species coexistence.
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Figure 6.8: Enrichment study of the four
species state from figure 6.7(b). As in
the two species experiment (figure 6.4(a))
enrichment leads to species loss. Further
enrichment leads to cascades where the
extinct species changes to another. At
κ = 106 g1+λ/m3 still only one species
was extinct. However, around κ ≈ 3 ·
10−1 g1+λ/m3 the two largest species goes
extinct and the remaining species exist in
a steady-state; actually the 250 g species
persists at a very low biomass level till
the larger species can persist without it.
Around κ ≈ 2.2 · 10−3 g1+λ/m3 the 50 g
species is capable of persisting in at least a
very long transient. 2000 years simulations
were used for the experiment.

M. Pedersen, Friday 28th July, 2006 Coexistence in size-structured ecosystems



Section 6.3: Random Invasion: States Between Ladder Steps 87

6.3 Random Invasion: States Between Ladder Steps

In the previous it has been shown how the trophic ladder leads to species coexistence.
In this section it will be showed that more states than the trophic ladder states
actually are possible without any modifications of the model.

To try locating such states a random invasion experiment was carried out using
just 10 species. Every five years in the simulation it was checked if any species had
gone extinct, and extinct species were replaced with new species having a random
w∞. Details of the experiment is given in figure 6.9(a) along with the result of such
a simulation. In the plot it is seen that the surviving species are clustering in size
ranges comparable to the clusters in figure 6.1, and that more species are present
at both steps of the trophic ladder. It is seen that the clusters are coexisting for
thousands of years before, by random, new species are capable of disturbing the
system and starting new clusters. If ultimate species sizes w∞ from a horizontal
line is taken and used in an independent simulation without any invasion up to six
species are often seen to coexist over a long transient (typically 500 − 1500 years)
indicating as in the Scheffer & van Nes (2006) experiment that only very weak
forces are needed to stabilise the system. Figure 6.9(b) shows the result from such a
run where actually three species end up in a stable state. This state is not entirely
due to the trophic ladder, since the two larger species clearly need the smaller for
existence, but the two larger species may exist along with the smaller without each
other. The stability of the state was tested by varying w∞ of the species, and the
result was that the state might turn cyclic but remain stable for some variation as
in section 6.2.1.
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Figure 6.9: (a) Random invasion using ten species. Ten species are added evenly distributed in
the [1 g; 19kg] range. Every five years it is checked if any species are extinct. Extinct species
are then replaced with new species having w∞ = 10n where n is randomly chosen in the
[log(1 g); log( 19kg)] range. New species are introduced at low biomass levels (10−8 g). Blue
colour marks species present at high biomass levels (> 10−6 g), green colour marks species
at intermediate to low biomasses that may be close to extinction (10−8 g − 10−6 g), and red
marks species with a biomass lower than when it was introduced (10−13 g − 10−8 g). Species
are removed when their biomass has dropped five orders of magnitude below the introduced
biomass (10−13 g). It is seen that some clustering is appearing in size ranges comparable to the
clusters in figure 6.1, and that more states are present at each trophic ladder step. (b) Example
of three species (w∞ = {23.46 g, 3.036 kg, 13.87 kg}) coexistence where the two larger species
can survive without each other, but both are dependent on the smaller species. Parameters:
default (section 3.6).
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Figure 6.10: A stable six species (w∞ =
{1.625 g, 34.81 g, 70.45 g, 359.7 g, 997.2 g,
1.164 kg}) chaotic state originating from an
invasion experiment with σ = 0.5, β = 0.1,
and κ = 0.1 g1+λ/m3. The six species are not
in a pure trophic ladder state since parts of
the species survive if an intermediate species
is removed. The shown spectra are the mean
spectra of the time series.

To try locating states with more coexistence the random invasion experiment was
repeated with an increased enrichment of κ = 0.1 g1+λ/m3 and σ = 0.5, β = 0.1.
From this a state was located where six of ten species were stable in a chaotic state.
This state is depicted in figure 6.10.

Above it has been demonstrated that additional coexistence from the trophic
ladder states is possible without any modification of the model. It is, however, likely
that coexistence can be made easier by incorporating the parallel to the interference
competition incorporated by Scheffer & van Nes (2006) to stabilise the coexistence
of more species. This does indeed bring optimism for making an assembly algorithm
that can build communities in the completely mixed environment setting. Such an
algorithm will, however, not be devised in this thesis.

6.4 Perspectives for More Species

In the previous sections the concept of a trophic ladder has been shown to produce
coexistence, and it has been demonstrated that additional states may be located in
between the steps of the ladder. The trophic ladder mechanism gives rise to some
coexistence, but it cannot account for the biodiversity seen in nature, since this
would require many ’trophic levels’ and high values of κ. However, from Loeuille &
Loreau (2005) it can be learned that the number of states between distinct trophic
levels depends on both niche width and interference competition intensity. Scheffer
& van Nes (2006) show that self-interference is important for the stability of the
previously discussed clusters. This means that it can be expected that incorpo-
ration of a parallel mechanism of interference will enhance coexistence. In short
interference is the effect that two similar species will affect each other negatively in
addition to the fact that they often compete for the same resources.

Everybody is capable of eating everybody if they are of a suitable size in the
completely mixed environment setting of the size-structured model. Clearly a food
web structure consisting of preferences for eating of some species, but not others
can be expected to yield further coexistence. This is the topic of the next chapter.
However, assemblies of food webs are often based on higher-level emergent properties
of food webs (i.e. connectance) instead of examining the lower-level mechanisms that
give rise to coexistence. One can think of the trophic ladders as an emerging food
web structure from lower-level processes since it was i.e. argued in section 6.2.1 that
not all inter-species links were important for the qualitative result of the coexistence
pattern.
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It may be possible to gain even more coexistence in the mixed environment set-
ting. The only trait that characterises a species is its ultimate size w∞, and this
trait lead directly to the trophic ladder mechanism. It may be speculated that
adding more traits can introduce other mechanisms for coexistence. The w∞ im-
plies a trade-off on the individuals strategy: aiming for a large w∞ implies that a
smaller percentage of body size will be used for reproduction while the larger size
provides a refuge from size dependent predation (cf. section 3.2.3). Identification of
other important traits should likewise often be linked with trade-offs in the bioen-
ergetic model. Traits that could be studied are i.e. i) the role of specialisation vs.
generalisation, ii) predation vs. sit-and-ambush strategies where the last is possi-
ble at a lower metabolism, iii) development of protection mechanisms that requires
high maintenance, and iv) the role of differing spawning seasons. The possibility of
adding more traits are discussed further in chapter 8.
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7
Size-Structured Food Webs

Food webs reflect the structure of ecosystem predator-prey interactions – that is:
food webs are graphs of who eats whom in an ecosystem. In this chapter we will
use the model from chapter 3 to construct a size-structured food web.

In the previous chapter it was demonstrated that multiple species can coexist in
the case of a completely mixed environment where everybody is capable of eating
everybody if they are of a suitable size. However, coexistence from the mechanism
denoted the trophic ladder was argued only to be partly responsible for ecosystem
biodiversity, and it was argued that i.e. the food web structure will play a role for
the biodiversity. In this chapter it is demonstrated that the structure of the food
web indeed makes coexistence more common.

The first section 7.1 generalises the model from chapter 3 to be used in a size-
structured food web framework. After this it is demonstrated that cannibalism
can promote coexistence (section 7.2). This is followed by demonstrations of food
web structures that show that the structure (who eats whom), and the strength of
the interactions are important for the number of coexisting species (section 7.3). In
section 7.4 the multi-species states from this and the previous chapter are compared
to the analytical results of the reduced steady-state model in section 5.1. The
structure of a food web is not likely to be constant over time since species may start
consuming of other species if they for some reason become very abundant, and in
the final section 7.5 it is demonstrated that this kind of switching behaviour indeed
can play a role for coexistence.

7.1 Constructing a Size-Structured Food Web

The model from chapter 3 needs a couple of small modifications before it can be
used as a food web modelling framework. To enable feeding preferences of different
species we introduce the function Ωi(N):

Ωi(N) = θi,b(N)nb(w, t) +
∑
j

θi,j(N)nj(w, t) (7.1)

which we denote the experienced total spectrum for species i. This name is inspired
by the total spectrum N(w, t) (3.51) which is the total spectrum of all species and
the background resources (the community spectrum). θi,b(N) ∈ [0; 1] is species i’s
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preference (or coupling strength) for the background spectrum. θi,j(N) ∈ [0; 1] is
species i’s preference for species j. The preferences are in the [0; 1] range since values
above 1 would scale the available densities in (7.2) to higher densities than what is
actually available. By using this notation species may be disconnected (θi,j = 0) or
have preference couplings of different strengths towards both other species and the
background resources; Ωi(N) thus gives the total spectrum that species i encounters
or experiences.

The θ preferences are functions of the environment (denoted as the total spec-
trum N(w, t)) to allow studies of e.g. switching (a species may change its diet from
one species to another depending on abundance levels). However, in this thesis we
will mainly examine constant preferences θi,b(N) = θi,b and θi,j(N) = θi,j :

Ωi(N) = θi,bnb(w, t) +
∑
j

θi,jnj(w, t) (7.2)

where we note that Ωi(N) of course still is a function of the environment, since the
experienced total spectrum is a subset of the total spectrum N(w, t).

We may think of the preference couplings θi,j as interaction strengths in clas-
sical unstructured food webs; see e.g. Martinez et al. (2005) for an introduction
to unstructured dynamical food webs. However, in this thesis I will refrain from
this notation since it may cause confusion. The preference is not an interaction
strength since the actual interaction strength is the preference times the size se-
lection function s(w,wp) (3.65). Furthermore the resulting interaction strength is
also a function of the feeding level fi(wp, N) (3.61) and the available food ϕi(wp, N)
(3.64) which we have to generalise to:

ϕi(wp, N) =

∫
Ωi(N)wsi(w,wp) dw (7.3)

Likewise we have to modify the mortality rate for species i µi(w,N) (3.66) to:

µi(w,N) =
∑
j

θj,i(N)µp,j(w,N) + µi,s(w) + µi,0 (7.4)

as well as the mortality of the background:

µb(w,N) =
∑
j

θj,b(N)µp,j(w,N) (7.5)

After these mathematical details of the size-structured food web we will now il-
lustrate the differences from a traditional unstructured food web. Figure 7.1 shows
a small unstructured and a small size-structured food web. The links in the size-
structured web are of a more general nature since the interaction strength is a
function of both the actual preference and the size-selective function. This means
that even though there is a connection between two species then parts of the spec-
trum may not experience the link if the size-selective function is very weak; this
would for instance be the case for a smaller species connected to a larger species.
Self-interactions such as cannibalism is also more naturally incorporated in the size-
structured web since this is easily modelled with the size-selection function. In both
webs we can see dynamics of the interacting species in biomass abundances, but in
the size-structured web we also have intra-species dynamics in the species density
function.
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(a)

nb(w,t)n1(w,t) n2(w,t)1,2 2,21,1 1,b 2,b2,1
(b)

Figure 7.1: Examples of small food webs. (a) Traditional unstructured food web with preda-
tor, consumer, and resource. (b) Size-structured food web. The black arrows indicate self-
regulation in primary production. Self-interactions (i.e. cannibalism) are rarely used in un-
structured models whereas cannibalism naturally is implemented in size-structured models.
Size-structured links are drawn wide to illustrate that individuals of differing size may experi-
ence different effective interaction strengths due to the size-selection function. In unstructured
webs αi,j is interaction strengths, whereas θi,j is denoted preferences in size-structured webs;
interaction strengths are obtained both through the preferences and the size-selective function.

7.1.1 Interpretation of the Experienced Total Spectrum Ωi(N)

The inter-species preferences part θi,j of Ωi(N) is a matrix, which means that we
may use the computationally convenient formulation:

θi,j =


θ1,can θ1,2 θ1,3 · · · θ1,S
θ2,1 θ2,can θ2,3 · · · θ2,S
θ3,1 θ3,2 θ3,can · · · θ3,S
...

...
...

. . .
...

θS,1 θS,2 θS,3 · · · θS,can

 (7.6)

where S is the total number of species.
Row i is species i’s preferences towards species 1...S. The diagonal is self-

interactions and thus the preferences for cannibalism. Different interpretations are
available for the rest of the matrix. Below the three most intuitive are discussed.

1) Spatial overlaps: The off-diagonal may be regarded as a measure of how
geographically accessible the different species are to each other. If i.e. species 1
and 3 have no spatial overlap then θ1,3 = θ3,1 = 0, and in general it is clear that
the matrix becomes symmetric (θi,j = θj,i). A preference of 1 means that the two
species are completely mixed among each other.

2) Temporal overlaps: The interpretation in 1) is directly translatable to
a temporal interpretation where a coupling of 1 means that the two species are
present at the same location all the time and vice versa. In this case the matrix will
naturally also be symmetrical.

3) Diet preferences: The size of the preferences θi,j may also be understood
as a dietary preference. Maybe species 3 has a preference θ3,1 = 0.5 for species 1,
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while species 1 is not feeding on species 3 θ1,3 = 0. In this interpretation the matrix
is in general asymmetric, but can be symmetric if preferences between two species
always are mutualistic.

For further generality the preference matrix should be a function of w so that
preferences towards different species could change with size. This is partly included
with the size selection function. Even though i.e. a large predator like cod is con-
nected to zooplankton then it will only feed on this resource when it is small since the
food selection otherwise is zero. A generalisation with a size dependent preference
matrix would however be too complex for this thesis.

The three interpretations naturally do not exclude each other. One might divide
θi,j into three matrices:

θi,j = θi,j,diag + θi,j,overlap + θi,j,pref (7.7)

where the first matrix only contains the diagonal (cannibalism) and the two latter
have zero diagonals. The second matrix contains couplings due to spatial and/or
temporal overlaps, and the third couplings due to dietary preferences. The second
matrix is as discussed above symmetric whereas the third may be symmetric, but
asymmetric in most cases.

The preferences θi,b towards the background in (7.2) may equivalently be divided
into two terms:

θi,b = θi,b,const + θi,b,pref (7.8)

where the first term is the largest scalar that the S background preferences have in
common, and the second the remaining vector where at least one element is zero.
The constant term θi,b,const thus corresponds to an effective scaling of the magnitude
of the background spectrum κ, and θi,b,pref then represents the actual difference in
preferences of the background between the S species.

7.1.2 The Concept of Connectance

In classical unstructured food webs connectance is mostly defined as C = L/S2,
where L is the number of links and S the number of species in the food web.
Clearly S2 links is the maximum number of links a food web can have if cannibalism
is included. Thus C ∈ [0; 1]. A link is either present ’1’ or not present ’0’ in classical
food webs. In the framework presented in this chapter species i has a preference
θi,j ∈ [0; 1] towards species j. The concept of connectance may in the framework at
hand be defined equivalently as:

C =
1

S2

∑
i,j

θi,j (7.9)

Where we note that the connectance says nothing about the background preference
θi,b, but denotes a property of the preference matrix (7.6). Naturally we also have
C ∈ [0; 1] in the size-structured framework. The connectance of a single species can
also be defined (C = 1

S

∑
i Ci):

Ci =
1

S

∑
j

θi,j (7.10)
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7.2 Cannibalism Can Promote Coexistence

In this section it is demonstrated that cannibalism promotes coexistence in a manner
similar to the self-interference term in i.e. Scheffer & van Nes (2006) (cf. section 6.1).
The difference from the self-interference term, which can be seen as an increased
mortality rate for increasing populations, is that cannibalism also gives rise to an
energy gain.

To study the effect of cannibalism ten species are studied (w∞ ∈ [1 g; 300g])
that in solo are capable of reaching the size of maturation and thus exist solely on
the background spectrum. The study is started by using a zero preference matrix,
so that no species interact and none are cannibals. Figure 7.2(a) shows that this
produces a system with two coexisting species where the other goes extinct due to
resource competition which does not allow them to grow to the size of maturation.

The index BMSlog = ∆ log(B)
∆t is introduced to easily illustrate whether a species

is capable of persisting in a given system. BMSlog is the slope of the species
biomass (B) evolution in a semi-logarithmic plot, and a persisting species will thus
have BMSlog = 0years−1 log(gm−3).

Now the diagonal θcan in the matrix that determines the species’ preferences
for cannibalism is varied from 0 to 1. Figure 7.2(b) illustrates that this experiment
results in an increasing numbers of coexisting species. At θcan = 0.5 nine of the ten
species coexist. The largest species is not capable of persisting even for full canni-
balism since its capability of feeding on the background spectrum is too weak with
the default β and σ for the size selection function (cf. section 5.2.5). Cannibalism
allows the species to coexist due to 1) increased capability of retrieving suitable food
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Figure 7.2: Examination of cannibalism for 10 species having their w∞’s logarithmically evenly
distributed in the range [1 g; 300g]. (a) The species spectra at time step t = 500 years and the
biomass evolution for the case where the preference matrix is a zero matrix. It is clearly seen
that only three species is not diverging to extinction due to exclusion from resource competition.
However, the blue dotted species is also diverging towards extinction at a very slow rate leaving
only two coexisting species. The index BMSlog = ∆ log(B)

∆t
is the slope of the species biomass

(B) evolution in a semi-logarithmic plot. A species having BMSlog = 0years−1 log(gm−3) is
capable of persisting in the system. (b) Plot of biomass evolution slopes BMSlog for the 10
species for varying strength of the preference for cannibalism θcan. It is seen that more species
can coexist for increasing θcan. At θcan = 0.5 nine species coexist where only the largest
species cannot persist due to food limitation from resource competition. All coexisting species
for all θcan preferences are in steady-state.
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items, and 2) due to decreasing abundance levels competing for the same resources
since cannibalism effectively is a damper since the energy fraction e(1 − α) is not
utilised for new recruits (cf. equations (3.3) and (3.58)).

In the previous chapter cannibalism was not seen to stabilise the clusters in
section 6.1 since cannibalism did not play a dominating role because a preference
of 1 was present towards all species.

7.3 Food Web Assembly

The most challenging part of using the food web framework presented above is the
problem of determining how the food web should be assembled. This problem will
not be tackled in this thesis. However, in section 7.3.1 a null model will be used
to show that random food webs with random preferences enhances the coexistence
pattern seen in the last chapter where the completely mixed environment (all pref-
erences equal to 1) setting was used. Section 7.3.2 uses the niche model (Williams &
Martinez (2000)) to show that food webs where not all species are connected allow
more species to coexist. Finally in section 7.3.3 different approaches for assembly
are outlined.

The preferences towards the background resources θi,b will not be studied, hence
∀i : θi,b = 1. Only the essential structure of inter-species who-eats-whom relations
are considered in the following.

7.3.1 Preference Strength is Important

The simplest way that the preference matrix θi,j (7.6) can be constructed is by
using a null model where all preferences are selected randomly from [0; 1]. Often
this reduces to systems where one to three species are surviving, but within a few
runs where the w∞ of 25 species were logarithmically evenly distributed in the
[1 g; 19kg] range a stable state consisting of 7 species was located.

Following the procedure from the previous chapter the extinct species were re-
moved and a simulation with the 7 species was made to check that the system is
stable. The state is depicted in figure 7.3 and the preference matrix is:

θi,j =



0.9717 0.6835 0.8536 0.0657 0.6029 0.5517 0.8809
0.7398 0.9716 0.0180 0.0488 0.9963 0.6269 0.4193
0.0107 0.0415 0.1565 0.9573 0.4431 0.4706 0.3915
0.5280 0.3616 0.6795 0.8132 0.0726 0.1309 0.4654
0.5207 0.2553 0.1884 0.3223 0.4552 0.6165 0.7560
0.2567 0.6248 0.1299 0.1236 0.2917 0.3263 0.7733
0.7380 0.8878 0.0602 0.8221 0.1396 0.0439 0.2473


(7.11)

From figure 7.3 it is seen that the null model has produced a state with 7
species that coexist with low biomass oscillations. This may be due to the fact
that weak couplings are expected to stabilise food web structures (McCann et al.
(1998)). Removing links with a preference below 0.1 does not alter the system, but
removing links below 0.2 causes two species to go extinct and leaves a 5 species
state that still have low amplitude oscillations. Making the weakest links stronger
does not produce more extreme states either. From this example it is difficult to
prove that the many links of varying strength dampens the system. Many links of
weak to intermediate strength are, however, important for promotion of community
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Figure 7.3: Resulting 7 species stable state
from a 25 species simulation where the w∞’s
were logarithmically evenly distributed in the
range [1 g; 19kg]. The preference matrix
was created by drawing random preferences in
[0; 1]. The resulting state has connectance
C = 0.46, w∞ = {17.7 g, 26.7 g, 138 g,
1.62 kg, 2.44 kg, 8.36 kg, 19 kg}, and prefer-
ence matrix (7.11).

persistence and stability, and empiric seems to agree that natural food webs are
characterised by many weak and a few strong interactions (McCann et al. (1998)).
Weak interactions can dampen dynamics by providing alternative energy routes
(McCann et al. (1998)), and it is clear that if only weak preferences are present
towards certain species then these will clearly be less vulnerable to predators.

The null model produces states with a high connectance value compared to
typical food web statistics. The expected connectance from the null model is:

Cnull,exp =
1

S2

1

2
S2 =

1

2
(7.12)

where typical food web statistics indicate connectances of 0.1 − 0.3 (Williams &
Martinez (2000)). It may, however, also be expected that the connectance of the
preference matrix should be higher than in classical interaction matrices since the
actual interaction strength in the preference matrix is the preference times the size
selection function (3.65).

Only very few runs have been made so no conclusion can be made to how likely
the null model is to result in communities of multiple species, and how likely the
model is to expose only small amplitude oscillations. However, from the example
above it has been demonstrated that variation in preference strength can lead to
stable communities of several interacting species. It has also been discussed that we
may expect the preference matrix to have higher connectance values than classical
interaction matrices.

7.3.2 Constructing Food Webs using the Niche Model

Above it was seen that variation in preference strength can lead to stable commu-
nities. In this section it will be shown that the structure of the food web also leads
to multi-species communities. To study the effect of food web structure preferences
will be considered either present ’1’ or absent ’0’. This is done since methods for
constructing such food webs are readily available. That both food web structure
and preference strengths are important for coexistence calls for methods incorpo-
rating both in the food web assembly process. This is discussed in more detail in
section 7.3.3.

In brief four methods for constructing food webs from a top-down approach are
available. Constructing webs from a top-down approach means that the entire web
is constructed from some algorithm that do not consider how the web may actually
have evolved through evolution and/or invasions, and if the resulting web indeed
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Figure 7.4: The niche model (Williams & Martinez (2000)). Each species i is assigned a niche
value xi drawn uniformly from [0; 1]. Species i can predate on species having niche values in
the ri range with the centre ci. The centre of the preferred niche value ci is drawn uniformly
from [ri/2; xi], and the range ri of niche values that the species is connected to is drawn with
a β-distribution (α = 1) from [0; 1] with expectation value 2C and multiplied with xi to obtain
an expectation value of C. All species are allowed a preference of 1 towards the background
spectrum since all species need the background in the early life stages.

is possible to occur in nature. The methods are qualified by testing how well they
reproduce statistics of natural food webs, and are typically used only for studying
static food webs. The four methods are the null random model where all links are
equally likely to occur, the cascade model (Cohen & Newman (1985)), the niche
model (Williams & Martinez (2000)), and the nested hierarchy model (Cattin et al.
(2004)).

In the cascade model all species are given a rank number 1...S and all species are
allowed to predate on a random number of species with a lower rank than themselves.
This clearly does not allow cycles as i.e. cannibalism. This problem was solved by the
niche model which has been proven to reproduce food web statistics much better
(Williams & Martinez (2000))∗. The most recent model is the nested hierarchy
model which improves the capability of reproducing food web statistics. In this
thesis only the niche model will be used to examine the food web structure, since
the nested hierarchy model is more problematic to implement in the framework at
hand and since it is not widely used in the literature. The niche model has also been
used in studies of unstructured dynamic food webs (i.e. Martinez et al. (2005)).

Outline of The Niche Model

The niche model (Williams & Martinez (2000)) is similar to the cascade model, but
its algorithm encapsulates more ecological realism. As in the cascade model each
species i is given a rank called a niche. The niche value xi is drawn randomly from
[0; 1] (uniform distribution), and each species is allowed to feed on species having
niche values in an interval ri around the centre of a preferred niche value ci (cf. figure
7.4). The preferred niche value ci for species i is drawn uniformly from [ri/2; xi]
to allow cannibalistic cycles and some feeding on some species with a higher niche
value. The range of the niche values ri is drawn from a β-distribution (α = 1) in
[0; 1] with an expectation value of 2C, and multiplied with xi to obtain the expected
connectance of C. The probability density function for the β-distribution is given
by:

Pβ(y) =
(1− y)β−1yα−1

B(α, β)
, for y ∈ [0; 1] (7.13)

∗This is however mainly due to the development in the procedures used for collecting food web
data. Earlier cycles and omnivory was i.e. not seen in real food webs, whereas it today is generally
agreed upon that both are quite common in natural food webs. See i.e. Drossel & McKane (2003)
for a small review.
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for the β-distribution using α = 1 (7.14). Low
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row widths of the preferred range of niche val-
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form distribution, and large connectance val-
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where B(α, β) = (α−1)!(β−1)!
(α+β−1)! is the beta-function. For α = 1 the beta-function

reduces to B(1, β) = β−1. This means that the probability density function (7.13)
may be written simply as:

Pβ(y) = β(1− y)β−1 , for y ∈ [0; 1] (7.14)

The expectation value of the β-distribution is given by E(Y ) = α
α+β = 1

1+β , which

means that β = α
E(Y ) − α = 1

2C − 1 should be used to obtain an expected value

of 2C. The probability function (7.14) is seen only to be defined for C < 0.5, and
figure 7.5 shows the distributions for different connectance values.

In the niche model the resource is given the niche value xR = 0 so that not
all species are connected to the resource, but most likely species with low niche xi
values. This makes sense in unstructured models since the abstract niche here may
be regarded as a trait like body size, and clearly it seems more likely that mainly
smaller species use the primary production as a food source. In the size-structured
framework it makes no sense to interpret the niche value as ultimate body size, and
clearly all species needs to have links to the background spectrum since the smallest
individuals in a species only can feed on the background. In the size-structured
framework the niche value is an abstract one-dimensional quantity that determines
the feeding relations among species. That such a one-dimensional trait should exist
is of course highly hypothetical, and it could be interesting to study the effect of
multi-dimensional niche values for the generation of preference matrices.

A Stable Community from the Niche Model

Figure 7.6 shows an example of the preference matrix θi,j (7.6) for 100 species
constructed using the niche model. Two different permutations of the matrix are
shown. One where the species are ordered according to their niche value xi, and one
where the species are ordered according to their ultimate body weight w∞. The w∞
of the species were assigned logarithmically evenly in the range [1 g; 19kg]. From
the niche ordered matrix it is seen that species with large niche values have more
prey species since more species with a lower niche value clearly are available. The
size ordered matrix shows that all species in general are connected to a wide range
of w∞ species, and that the notable difference between the species is the number of
links.

A simulation with the matrix from figure 7.6 was carried out. Species that went
extinct were removed till a stable system was located. From this process the 14
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Figure 7.6: 100× 100 preference matrix θi,j constructed using the niche model with C = 0.4.
Realised connectance Cr = 0.347. A black dot indicates a link, and the species used for the
simulation have their w∞’s logarithmically evenly distributed in the range [1 g; 19kg]. (a)
The preference matrix where the species are ordered increasingly after their niche value xi.
It is noted that species with low niche values only have few links since few species with a
smaller niche value is present. (b) The same preference matrix where the species are ordered
increasingly according to ultimate size w∞.

species state from figure 7.7 was located. It is, however, possible that stable states
of more than 14 species can be located from the 100 species system since some
species could have been lost in the process if they for some reason were excluded
in the transient and have a very long time for recovery. Also removing one species
that is actually stable can cause a cascade that makes additional species go extinct.

Figure 7.7(a) shows the resulting preference matrix for the 14 species state.
From the matrix it is seen that all species are cannibals, which in section 7.2 was
demonstrated to promote coexistence. The niche model can generate stable food
webs where some species are non-cannibals, but still the majority are seen to be
cannibals.

The pattern in the reduced preference matrix in figure 7.7(a) is equivalent to
the pattern in the generated matrix (figure 7.6) since the main difference between
the preferences of the w∞ species is the number of links. The 100 × 100 matrix
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Figure 7.7: The 14 species stable state that originates from the simulation of the preference
matrix in figure 7.6. Cr = 0.408 and w∞ = {1.82 g, 2.45 g, 3.30 g, 4.45 g, 8.93 g, 19.8 g,
72.2 g, 528 g, 787 g, 869 g, 960 g, 3.17 kg, 5.21 kg, 15.6 kg}. (a) The resulting preference
matrix. (b) Mean spectra and biomass evolution of the state.

M. Pedersen, Friday 28th July, 2006 Coexistence in size-structured ecosystems



Section 7.3: Food Web Assembly 101

12 34 567 8 9121110
13 14w

Figure 7.8: Visualisation of the food
web from the 14 species state in figure
7.7. Cannibalistic links and links to the
background are not drawn for visibility.
Green links are links to smaller species
eating on species that have at least a
10 times higher weight. The species
are ordered increasingly upwards ac-
cording to ultimate body weight w∞.

was created with a high connectance of C = 0.4, and a high realised connectance of
Cr = 0.347 was returned by the niche model. As discussed above in section 7.3.1 a
high connectance is used since the preference matrices are expected to have higher
connectance values than classical interaction matrices since the interactions in the
preference matrix is the product of the preference and the size-selection function
(3.65). The resulting 14 species state has a high connectance of Cr = 0.408.

In figure 7.8 the 14 species states from figure 7.7 is visualised. From the food
web it is easily seen that the niche model also is capable of producing cycles in the
food web. This is true since the ri range may be located so that a species can feed
on some species with higher niche values. Examples of cycles are species 2–5–2 and
2–8–5–2.

From the food web species no. 4, 7, and 14 are recognised of having a link
composition different from the other species. Species no. 4 is seen only to have links
to species that are at least 10 times larger than itself. This means that its prey not
will suffer notably from predation mortality in the largest 3 orders of magnitude
due to the prey-predator ratio β. Species no. 14 is seen to be a top predator since
it only has enemies of smaller w∞ species. Removal of species no. 4 or 14 results
in cascades where several species goes extinct. Finally species no. 7 is recognised of
only feeding on the background and via cannibalism. It is a prey for five species,
where species no. 13 depends heavily on it since removal of it causes species no. 13
to go extinct.

If 0.2 is added to the zero elements in the 14 species preference matrix from
figure 7.7(a) species no. 4, 5, and 13 are lost, and the resulting 11 species community
coexist in the steady-state in figure 7.9. Simulation of the 11 species without the
0.2 preferences results in a cyclic 9 species state. This is another example that
shows that many weak links dampens oscillations. The state do indeed have many
links since it has a high connectance of Cr = 0.557. It is noted that the wildly
fluctuating species no. 5 from figure 7.7(b) (magenta, 8.93 g) goes extinct, which
is not surprising since its fluctuations indicate that it could go extinct for small
changes in the food web structure. The new food web structure does not allow
species no. 4 and 13 to gain enough suitable food intake to reach maturation which
then causes their extinction.
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Figure 7.9: Resulting 11 species steady state
when a 0.2 preference is added to the zero
preferences in the 14 species state in fig-
ure 7.7. The 11 species: w∞ = {1.82 g,
2.45 g, 3.30 g, 19.8 g, 72.2 g, 528 g, 787 g,
869 g, 960 g, 3.17 kg, 15.6 kg}. The state has
a high connectance of Cr = 0.557. Notice
that 4 species are present around w = 100 g,
and that the red and red dashed species’
biomass evolution coincide.

7.3.3 Assembly Models: Bottom-up or Top-down?

In the two previous sections it has been demonstrated that the strength of the
preferences, and the structure of the food web plays an important role for coexis-
tence. Furthermore it was shown that the weak links also serve as dampers to avoid
extremely fluctuating populations that are very vulnerable to stochastic extinction.

A top-down approach was used for the construction of the preference matrix.
The top-down ’assembly’ of i.e. the niche model does not give any explanation for
the observed structure of a food web – it is merely capable of producing webs with
statistics similar to empirical food webs. Also it is not possible to tell whether the
constructed community could have evolved in nature.

Food webs in nature are formed by their history from species invasion, extinc-
tions, cascades, and evolutionary mutations on the even longer time-scale. Thus to
understand the structure of food webs two time-scales are needed in a bottom-up as-
sembly model that examines the emergence of food web structures. The time-scales
needed are naturally the ecological time-scale already present and some longer time-
scale for species invasions and/or evolution. To avoid complexity species invasions
and evolution should be considered independently. However, the concepts are in
general not expected to yield very different results since the species available for
immigration in surrounding communities in general not are expected to be very
different from the ones already present.

The second time-scale can also be important for coexistence. In the simulations
it was often seen that species are going extinct in a long transient, which indeed can
be stabilised by processes on the longer time-scale (e.g. Scheffer & van Nes (2006)).
The second time-scale may also prove important when studying human interactions
with natural systems. Human interactions often occur at a much faster time-scale
than the natural assembly process, which means that selection pressures towards
new niches may be increased so that evolution will play a larger role at a faster
time-scale than usually.

Drossel & McKane (2003) give a nice review of present approaches in the as-
sembly of dynamical food webs along with many useful references. This along with
the book by de Ruiter et al. (2005) contains many useful lessons and references for
the development of an assembly model for the size-structured food web framework
in this thesis.

In conclusion the two different approaches for constructing preference matrices
are relevant for different questions. The intensive two-scale bottom-up approach
is important to understand the structure and emergence of food webs, whereas the
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ad-hoc top-down approach is needed for less computer-intensive studies of ecological
problems. A next step with the size-structured framework from this thesis could
be 1) to study it using the bottom-up approach, and 2) to study an extended
niche model for the top-down approach where multi-dimensional abstract niches
determines the inter-species feeding relations.

7.4 Multi-Species Spectra vs. the Analytical Results

In this section the obtained multi-species spectra are compared to the analytical
results for the shape, distribution, and biomass of steady-state species spectra in
the reduced model of section 5.1. The chaotic 14 species state from figure 7.7, and
the 6 species chaotic state from the completely mixed environment setting in figure
6.10 are used as test cases. These are picked out since they include the highest
number of coexisting species of the two different settings of a) having a food web
structure, and b) having a completely mixed environment.

To compare the species spectra of the two cases with the analytical result the
slopes and magnitudes were computed using allometric fitting. The peaks upon
maturation due to reduced growth naturally play a role for the obtained slopes and
magnitudes. To study the influence of the peaks the slopes and magnitudes were
computed 1) where the peaks are included, and 2) when the spectra have been cut-
off before the peaks. Figure 7.10 shows the results of this process for the 14 species
state. It is seen that whether or not the peaks are included the same qualitative
result is obtained. Therefore only the case that includes the peaks is included in
figure 7.11(a) that shows the slopes and magnitudes for the 6 species state.

The analytical solutions of the reduced steady-state model predicts spectra
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Figure 7.10: Spectra slopes (left axis) and magnitudes (right axis) for the 14 species chaotic
state from figure 7.7. The slopes and magnitudes are obtained by fitting an allometric func-
tion to the species spectra. The blue curve is an allometric fit to the spectra magnitudes.
(a) Spectrum peaks upon maturation are included in the allometric fits. Species slopes are
located in the [−1.49; −0.45] range, and the magnitudes of the spectra follow an allometric
function with an exponent of −0.821. (b) Spectrum peaks upon maturation are excluded in
the allometric fits. Species slopes are located in the [−1.56; −0.67] range, and it is noted that
it is primarily the slopes of smaller species that differ from the case where the spectra peaks
are included. This is naturally the case since the peaks play a larger role for shorter spectra.
The magnitudes of the spectra follow an allometric function with an exponent of −0.685.
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Figure 7.11: Properties of the 6 species chaotic state from figure 6.10 which was obtained in
the completely mixed environment setting. Spectrum peaks upon maturation are included in
the allometric fits. (a) Spectra slopes (left axis) and magnitudes (right axis). Species slopes
are located in the [−1.47; −1.24] range, and the magnitudes of the spectra follow an allometric
function with an exponent of −1.22. If the magnitude of the largest species is excluded the
allometric fit yields the exponent −0.968 (red dashed curve). (b) Mean biomass showing a
decreasing dependency of w∞. If the biomasses of the smallest and largest species are ignored
then no w∞ correlation is seen. The smallest and largest species may be speculated to obtain
lower and higher biomasses, respectively, if the w∞’s of the state were more evenly distributed.

slopes of −k − a ≈ −3/4 − 0.6 = −1.35 when the typical value of a = 0.6 is
used for the predation strength. The slopes of the 14 species state show a decreas-
ing dependency of w∞. With and without the spectra peaks the slopes are located
in the ranges of [−1.49; −0.45] and [−1.56; −0.67]. The decreasing w∞ may be
attributed to the food web structure since the slopes of the 6 species state from
the mixed environment show no strong w∞ correlation, and since its slopes in the
[−1.47; −1.24] range are much closer to the analytical result.

Equation (5.6) using a = 0.6 predicts that the magnitudes should be distributed
with an allometric w∞ exponent of 2k − q − 2 + a = −0.73. The 14 species state
is close to this result with its exponents of −0.821 and −0.685 when peaks are
included and excluded (figure 7.10). The mixed environment 6 species state show a
steeper exponent of −1.22, but it is seen that the largest species has a much lower
magnitude (figure 7.11). However, exclusion of the largest species still yields a
steep exponent of −0.968. The disagreement may be due to the uneven distribution
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3 ] Figure 7.12: Mean biomasses of the 14

species from figure 7.7. The analytical results
from the reduced steady-state model predicts
equal biomass for all w∞ species. In the 14
species chaotic state the mean biomasses show
no correlation with ultimate body weight w∞.

M. Pedersen, Friday 28th July, 2006 Coexistence in size-structured ecosystems



Section 7.5: Prey Switching 105

of the coexisting w∞ species. The smallest species could be speculated to have a
lower magnitude, and the largest a higher magnitude if the w∞’s were more evenly
distributed.

The theory of the reduced model in equation (5.7) predicts that the total species
biomasses should be close to constant across the species ultimate size w∞. Figure
7.12 shows that the 14 species state shows no biomass correlation with w∞. The 6
species state shows a decreasing biomass dependency of w∞ (figure 7.11(b)). How-
ever, as discussed before a more even species distribution can be speculated to
produce a lower biomass for the smallest species, and a higher biomass for the
largest species. If the biomasses of the smallest and largest species are ignored then
no w∞ correlation is seen.

One of the key assumptions in the derivation of the analytical results of the
reduced steady-state model is that food always is abundant. This is definitely not
the case in the multi-species simulations of the full model since low feeding levels
are present, which i.e. causes the peaks that are seen in the species spectra. In
the reduced model no ontogenetic shift in the growth trajectory of the individu-
als occur since the energy contribution to reproduction is not modelled explicitly.
This ontogenetic shift amplify the problem of reduced growth since the energy re-
quirements increase upon maturation if growth is to continue. However, in spite of
these discrepancies of the two models it can indeed from the above discussion be
concluded that the species composition in the full dynamic model is consistent with
the predictions from the reduced steady-state model in section 5.1.

7.5 Prey Switching

Yodzis (1989) among others stress that the diet of real animals – compared to the
model species – have quite variable feeding habits. This problem is partly solved
by the size-structured model since it incorporates that the diet changes throughout
the life history through size-dependent predation. Furthermore animals may switch
prey type if their favourite prey becomes scarce. Thus real communities may be
more plastic compared to their model counterparts.

The role of prey switching is studied in a simplified case in this section where
each individual of size wp is allowed only to feed on the background and the single
species that provides the highest amount of suitable food items. This does indeed
promote coexistence, and figure 7.13 shows the result of such a simulation where 25
of 25 species are coexisting. The species are capable of coexisting since the switching
prevents exclusion. If a species i.e. starts to become very abundant everybody will
start eating of it, and if a species becomes rare it is likely to have no enemies.
Larger w∞ have no refuge either since that if they become very efficient spawners
their recruits will suffer from a high mortality, which eventually will decrease the
adult population and its total reproductive capability.

The effect of switching is that the magnitudes of the species spectra become
very similar. The biomass evolution also shows low amplitude fluctuations that,
however, expose a more noisy behaviour due to the constant switching.

In a switching experiment it may be impossible for some species to exist if they
fail to reach maturation due to lack of suitable food items (cf. section 6.2.1). This
may happen even though individuals feed of the species that provides the largest
amount of food since the spectrum magnitudes of the victims may be too low. In
the previous studies of coexistence this problem often get less pronounced since
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Figure 7.13: 25 species coexisting due to
switching behaviour. The ultimate sizes w∞
are logarithmically evenly distributed in the
range [1 g; 19kg]. It may be impossible for
some species to exist in a switching experi-
ment if they fail to reach maturation due to
lack of suitable food items (see text). Param-
eters: κ = 0.01 g1+λ/m3.

a species can feed of multiple spectra. In the switching experiments the species
spectra have comparable magnitudes, which amplifies the problem since this means
that the magnitude of the most abundant species often is lower than in the non-
switching experiments for a given κ. If the value of κ in figure 7.13 is lowered
to κ = 0.001 g1+λ/m3 some intermediate sized species cannot persist due to food
limitation that prevents them from reaching maturation.

Figure 7.14 shows more details of how switching takes place. In figure 7.14(a)
the prey species of all different individuals are shown, and figure 7.14(b) shows an
example of the switching behaviour for individuals of size wp. The intermediate
sized individuals that feed heavily on the smallest wp’s switch most frequently since
all species are available, whereas fewer species are available to switch between for
large sized wp’s.

Switching behaviour should more realistically be incorporated in a food web
structure. It is likely that a species may not have access to some species, and hence
it cannot switch its diet to those if they become abundant. The ’food web’ in this
case should then present all possible feeding items for a species. An individual of
size wp may then switch between the possible links depending on which resources
that are most abundant. It is also more realistic that a switch will not be a distinct
preference shift from 0 to 1 and vice versa why the effect of maintaining weak links
to more rare species could be interesting to examine.
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Figure 7.14: Elaboration of the switching behaviour responsible for the state in figure 7.13.
(a) The y-axis marks which species numbers (ordered increasingly for w∞) a given individual
of size wp predates on. (b) Time series of the diet of the wp = 5kg species marked with a red
dashed line in (a).
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8
Discussion

In this chapter the main results of the work in this thesis are discussed along with
suggestions for future research. The discussion is divided into three parts. The first
dealing with the model, the second part goes into the mechanisms that have been
shown to enable coexistence, and the third part discusses the numerical setup.

8.1 The Simple Size-Structured Population Model

In chapter 3 a simple size-structured model for marine ecosystems was derived. This
model encapsulates much more ecological realism than typical unstructured models
since it takes into account size dependent processes, which are very important in
aquatic ecosystems since individuals may grow six orders in magnitude throughout
their life and thus become their own enemy (cf. chapter 2). The model is denoted
simple since only one parameter, the ultimate body weight w∞, is used to distinguish
species.

The three key components for the model are the functions for growth, mortality,
and reproduction. The growth function determines how much energy that should
be allocated to somatic growth, maintenance, and reproduction depending on the
actual intake. Mortality is imposed on individuals from either direct predation
mortality from other individuals, starvation, or through a constant background
mortality that takes into account other sources of mortality, and makes sure that
mortality is present for the largest individuals. The starvation mortality has not
been recorded to play any substantial role in the results of the simulations. As
discussed in section 3.4.2 the starvation mortality only plays a role in the transient
of a simulation, and should not play a substantial role for the results of a simulation
since the starvation mortality has not been validated with empirical data since such
data are missing. New recruits enter the species spectrum at the smallest spectrum
size w0 via the function for reproduction that takes into account the mortality
individuals experience before they reach the recruit stage.

Since food intake is a size-dependent process a background spectrum is imple-
mented to provide suitable food items for the smallest individuals of all species. The
background spectrum represents smaller food items in the marine ecosystem as i.e.
(zoo)plankton, and is modelled by a series of semi-chemostatic growth equations (cf.
section 3.5). The background spectrum constitutes the lower half, and the species
spectra the upper half of the community spectrum.
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The environment that an individual encounters is completely determined by
all species’ spectra and the background spectrum. From this the available food,
and thus intake and growth is calculated. This also gives the reproduction and the
mortality for each individual. These lower level processes are described by individual
level functions, and from the individual level processes the population dynamics are
returned. This is another great advantage of size-structured models compared to
their unstructured counterparts. In unstructured models the dynamics are implied
by direct descriptions of the population dynamics whereas the population dynamics
from the size-structured models emerge from individual level processes that are more
naturally described. The individual level parameters are also more easily assessed.

All parameters for the individuals and the background spectrum were derived
to allow use of the model in a biologically plausible region of parameter space. The
only parameter that distinguishes species is the ultimate body weight w∞, and all
size dependent processes as i.e. the search volume of an individual are described
with functions of w∞ and w. Section 3.6 provides a summary of all equations in
the model along with the derived default parameters.

In the following two sections some important properties are described followed
by a discussion of how well the model describes natural systems, and how it can be
improved.

8.1.1 Important Properties of the Model

In chapter 5 the model was examined using just a single species. Following Andersen
& Beyer (2006) an analytical solution for the steady-state spectrum was derived in
a reduced model. An analytical solution was also found for the distribution of the
different w∞ spectra that constitutes the community spectrum. Finally it was found
that in steady-state the theory of the simpler model predicts all species to have the
same total biomass.

The analytical derivations were followed by examinations of the dynamics of the
model using just a single species. From this several lessons were learned. In the
model steady-state, predator-prey cycles, single-generation cycles, and dwarf-giant
cycles were located and demonstrated, and it was discussed that the model is capable
of producing dynamics consistent with the kinds of dynamics that are observed in
nature. Common for the three cycle types is that they expose intra-species cohort
cycles. The dynamic states were compared and concluded consistent to the theory
of the reduced steady-state system.

For the predator-prey cycles it was noted that size-structured models often are
less vulnerable to stochastic extinction compared to their unstructured counterparts.
When the biomasses of the predator-prey cycles reach low levels some individuals
in the species spectrum may be present at large abundance levels to counteract
stochastic extinction.

Theory was established to find the maximum w∞ that can exist on a background
spectrum that has been cut-off at wcut. Predators have a preferred prey-predator
ratio of β, and the lognormal size dependent food selection function (3.65) has the
width σ. This means that less and less food will be available from the background
when the predator grows beyond wcut/β, but that some food will be available due
to the width σ. This result proved important when describing simple coexistence
patterns when moving to multiple species (discussion follows in section 8.2). Large
w∞ species may, however, circumvent the theory established for finding the maxi-
mum w∞ for a truncated spectrum if a simulation is started with a high biomass
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spectrum, since large species have alternative states that allow the species to en-
ter a cyclic dwarf-giant state. The alternative states are due to bistability from
cannibalism in the model. Figure 5.17(b) (page 73) shows the maximum w∞ that
may exist on a truncated background spectrum for a given κ, and that alternative
dwarf-giant states are possible for large w∞ species. Without the alternative can-
nibalistic driven dwarf-giant states some of the large species would only be capable
of persisting in the system for very high values of κ.

8.1.2 The Model vs. Nature

In this section it is discussed how well the model represents natural systems, and
suggestions are given for advancing the model to an even higher level of realism.
First the bioenergetic growth model is discussed since it incorporates the energetics
of the individuals. The predation mortality is just a matter of bookkeeping that
makes sure that individuals that are consumed via the growth model indeed are
removed. Starvation mortality has been discussed above not to be important, and
the energy to reproduction is also determined by the bioenergetic model. After a
discussion of the growth model it is discussed how realism can be enhanced by using
more than the single trait of ultimate size w∞ to describe a species.

The bioenergetic growth model is the most important part of the model since it
takes care of the most important task of allocating the acquired energy into somatic
growth, maintenance, and reproduction. As described in section 3.2.3 where the
growth model is derived more research should be put into the allocation. In the
used ϱ(w∞) formulation (3.58) the cost of obtaining a large ultimate size w∞ is a
reduced capability of reproducing. The capability of reproducing is measured as
how large a percentage of body weight that is used for reproduction. This trade-off
seems to be physiologically reasonable. The problem in the model is that growth
upon maturation is stopped completely if food intake is not large enough for ideal
reproduction. Energy is first allocated to maintenance requirements, and if full
maintenance cannot be paid the missing energy is translated into a starvation mor-
tality. Then, if the individual has matured, energy is allocated to reproduction.
Finally, if excess energy is available after reproduction the remainder is used for
somatic growth. Thus if the acquired energy does not allow full ideal reproduction
nothing is spend on growth, and this has the effect of a pile-up of individuals upon
maturation as seen in i.e. figure 5.4 (page 61). Such extreme pile-ups do not seem
likely to occur in nature since some continuation of body growth could be expected
with the cost of reduced reproduction. Modifying the growth model to allow some
minimum growth when costs of ideal reproduction cannot be paid is, however, not
straightforward since it is difficult to find a rule to how much energy that should
be ensured to growth depending on both the available energy and body size. The
pile-up is due to a low feeding level due to limited available food, and it might
just be so that this does not occur in a natural ecosystem since it may organise to
prevent this. If this is the case research should of course be put into how this can
be modelled.

Individuals of a given size w are assumed identical in the model. This is clearly
not the case in natural systems since individual differences are present. This indi-
vidual diversity is a third way in which the pile-ups at maturation may become less
extreme. Other effects can also emerge from individual diversity, and the diversity
could be implemented with a higher-order term in the PDE (3.49) describing the
p-state. Expanding the model with such a term would, however, not be recommend-
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able at this stage since it may be more fruitful to explore and develop the current
model before complicating it further.

Advancing the Model to More Traits

In the model the only trait that characterises a species is its ultimate body weight
w∞. In nature more traits seem to identify species. This can be seen both by
looking on the physiological structure and the behaviour of species. In addition to
the ultimate weight the physical appearance of a species may be characterised by
body shape, colour markings, and special body features as i.e. defence mechanisms
in the form of spines. The body shape may be included in a behavioural trait
since body shape often reflects a species swimming and predation strategy. Colour
markings may be less important since most species can be expected to have the
colour that provides the best camouflage in a given ecosystem. Defence mechanisms
costs energy, but lowers the risk for predation and could thus also be modelled as a
behavioural trait. In the following different behavioural mechanisms that could be
implemented in the model are discussed:

• Foraging strategies. Species may have different strategies for foraging where
the two extremes are continuously foraging predators and predators that use
a sit-and-wait strategy where passing prey is ambushed. This strategy can be
implemented by modelling the used energy for activity (3.17) separately in the
growth model where the sit-and-wait predators have the advantage of lower
activity requirements, but the cost of a reduced food intake due to a smaller
search volume. Foraging strategy also has an indirect effect on predation
mortality since individuals may try to escape predation by aiming for a high
growth rate, which, however, may intensity the predation risk if the individual
exposes itself to more predators when foraging.

• Defence strategies. In the model predation mortality is only a function of the
predators search volume and not the strategy of the prey. Reduced mortal-
ity due to a certain strategy (i.e. spines) can be implemented by utilising the
food web framework so that predators become more weakly coupled to defence
strategists. The defense strategists costs for reduced mortality should be in-
creased maintenance requirements so that less energy is available for growth,
reproduction, and activity if this is modelled separately.

• Specialisation vs. generalisation. The role of specialisation vs. generalisation
in regards to selection of food items can be studied by varying the width σ
while requiring a fixed value of the integral of the food selection function (3.65).
This might, however, not be a very important trait in aquatic environments
since the lognormal size selection function is valid for i.e. both copepods and
cods (cf. section 3.2.1), but investigations should naturally be carried out to
ensure that it is not so that the food selection of many species cannot be
described with the default parameters.

• Different spawning periods. Species may spawn at different times during the
year and/or have very different spawning habitats. To include different spawn-
ing periods the time resolution of the model should be enhanced since the
model is expressed in time-steps of years. Different spawning grounds may be
incorporated via the food web structure, and should per see not be regarded
as a trait.
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• Size/age at maturation. Species may have different relationships or a different
proportionality than the used proportional relation (3.60) between wmat and
w∞. Using age of maturation instead of size at maturation can be more
realistic for some species, but is not expected to play an important role for
the qualitative results. Early maturation has the advantage of a low mortality
risk before maturation, and the cost of a reduced reproductive capability.

It is of course possible to list even more traits, but only the most important
should be modelled to enable simple models that encapsulates a high degree of
ecological realism.

The two first behaviourial mechanisms require incorporation into the bioener-
getic growth model, and the foraging strategy mechanism is more easily implemented
since it may be incorporated by using the trade-off that increasing values of the pref-
actor γ in the search volume (3.62) should lead to an increasing prefactor for the
activity requirements (3.17). The defense mechanism involves a trade-off between
an energetic maintenance term and the dimensionless coupling to predators, which
may be more difficult to quantify. Specialisation vs. generalisation is not expected
to be very important in aquatic ecosystems. Different spawning periods require im-
plementation of a finer time-scale, and the possibility of different spawning grounds
is already included in the food web structure. Size/age at maturation is interesting
when studying the evolutionary effects of harvesting, and is not expected to play
a significant role in promotion of coexistence since it may play a role similar to
differing w∞.

From this discussion it may be concluded that that the most obvious first extra
trait to incorporate in the model would be a trait to describe foraging strategy since
this is most easily implemented. The foraging strategy could be interesting since an
individual may use up to 80% of the available energy on activity meaning interesting
patterns could emerge from such studies; in the next section it is discussed that
such further traits might lead to food web structures that enforces coexistence. As
discussed above predation risk may be regulated by the activity of the prey, and
including an activity dependent refuge could thus be interesting as well.

8.2 Coexistence in the Size-Structured Model

In this section the mechanisms that have been located for coexistence in the devel-
oped model are discussed. First the possibilities for coexistence in the completely
mixed environment setting is treated (section 8.2.1), and secondly food web struc-
ture induced coexistence is discussed in section 8.2.2.

Before advancing to the mechanisms for coexistence it is noted that section 7.4
concluded that the spectra shape and distribution in the dynamic model is consis-
tent with the predictions in the reduced steady-state model of section 5.1. The full
dynamic model produces consistent spectra even though one of the key assumptions
of the reduced model is violated. In the reduced model food is assumed abundant,
which definitely is not the case in the full model where i.e. the observed peaks in
the spectra upon maturation are due to low feeding levels. The full model includes
an ontogenetic shift in the growth trajectory upon maturation which amplify the
problem of a low feeding level due to increased energy requirements upon matura-
tion.
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8.2.1 Coexistence in the Completely Mixed Environment

In chapter 6 it was shown that coexistence is possible in the setting of a completely
mixed environment where everybody is capable of eating everybody if they are of
a suitable size. Coexistence is possible in this setting due to the trophic ladder
mechanism. Small species can reach the size of maturation and thus exist purely on
the truncated background spectrum. Larger species cannot do this and thus need the
smaller species as a trophic ladder for existence. This pattern enables coexistence,
and it was shown that the mechanism can be generalised to more than two species.
It was also demonstrated that coexistence with species in between the steps of the
trophic ladder is possible. In the following the results of the examinations of the
trophic ladder mechanism is discussed further along with perspectives for obtaining
even more coexistence in the mixed environment setting.

The trophic ladder mechanism was studied more thoroughly in the two species
case. When the size of the smaller species is kept constant the larger species can
coexist up to a maximum w∞. This higher level is determined by the theory that
describes the maximum w∞ on a truncated background spectrum since the smaller
species can be seen as an extension of the background spectrum. A lower level for
the size of the large species does not exist since it can coexist down to the size
that allows it persist on its own. Actually coexistence is possible further down
to a w∞ where the smallest species becomes competitively superior. This is an
example of coexistence without the trophic ladder mechanism; the smaller species
do, however, assist the larger species in obtaining a higher biomass. When the size
of the larger species is hold constant there is a lower, and an upper level for the
w∞ of the small species that allow coexistence. The lower level is due to the same
mechanism as before since the background spectrum has to be extended to a certain
length to enable existence of the larger species. The upper level is due to decreasing
food availability for the larger species. As w∞ of the small species is increased its
spectrum magnitude decreases since the same amount of food has to be distributed
to a larger size range of individuals within the species. When the magnitude drops
below a certain level the food available for the large species drops to a level that
does not allow it to reach maturation.

An enrichment experiment of the two-species system was performed. Compa-
rable to the results of the studies of Intraguild Predation (IGP) by Mylius et al.
(2001) it was found that the smallest species is driven to extinction at high levels
of enrichment. The smaller species link to the larger species and its cannibalistic
capability can be removed without changing the qualitative results of the experi-
ment, which thus enables comparison with the Mylius et al. (2001) study. The large
species cannibalistic capability is, however, important since the smaller species is
driven to extinction because the large species enter the alternative dwarf-giant state
that allows it to exist without the smaller species. The large species can enter the
dwarf-giant state even on a low initial biomass spectrum since it may enter the state
by increasing its biomass through predation on the smaller species in the transient
of the simulation, meaning that the smaller species actually assists in its own ex-
tinction. Bistability allows extinction of the smaller species at two different levels of
enrichment since the large species may enter the dwarf-giant state at a lower level of
enrichment if the simulation is started with high biomass spectra. Without canni-
balism the smaller species is still driven to extinction, but not until a very high level
of enrichment where the large species can exist purely on the background spectrum.
Mylius et al. (2001) conclude that food chains cannot involve strong competition
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between an intermediate consumer and a predator since the consumer is driven to
extinction over a large range of enrichment. The conclusion of the experiment using
the size-structured model is that coexistence indeed is possible for two species that
have strong competition in earlier life stages. If cannibalism is removed the species
are even allowed to coexist over an even larger range of enrichment. If the two
species are to have strong competition over a large size w range the species should
have comparable w∞. In this case clearly only the competitively superior species
will sustain.

Even though the trophic ladder can be extended to multiple steps it is not likely
that the mechanism is responsible for major parts of the biodiversity that is seen
in nature. The trophic ladder can however play a role in the structure of size-
structured food webs and thus assist in species coexistence. As discussed in chapter
6 the addition of a parallel mechanism of interference competition (i.e. Loeuille &
Loreau (2005) and Scheffer & van Nes (2006)) in the size-structured model might
increase the possibility of having states in between the steps of the trophic ladder.
Cannibalism partly plays the role of self-interference with the notable difference
that cannibalism also attributes to an energy gain of the species.

The trophic ladder is a food web structure that emerges from lower-level pro-
cesses and that assists in species coexistence. It may be speculated that addition of
more species trait can lead to other mechanisms for coexistence in the completely
mixed environment. Having differing foraging strategies might i.e. lead to coex-
istence between different strategists since they can be expected only to interfere
weakly. Performing research into trait induced coexistence could thus be inter-
esting to locate additional lower-level processes that assist in generating food web
structures.

8.2.2 Coexistence from Food Web Structure

Chapter 6 generalises the model from chapter 3 so that it can be used to study
food web structures. The concept of an experienced total spectrum for a species
is introduced to enable the possibility that not all species are capable of predat-
ing on each other. Preferences in the range [0; 1] determine how strongly coupled
a species is to both the background and other species. Preference strengths are
different from interaction strengths in classical unstructured food webs since the
resulting interaction strength in the size-structured framework is the product of the
preference and the size-selection function. This is also why preference matrices can
be expected to have higher connectance values than classical interaction matrices.
A high connectance value was used when constructing food webs, and the resulting
system of coexisting species also had high connectance values compared to classical
unstructured food webs. In the thesis the role of the background preferences was
not examined since they only play a smaller role in the food web structure where
intra- and inter-species preferences primarily are of interest. All species need access
to the background spectrum to provide food for the smallest individuals and dif-
fering background preferences will thus give different growth opportunities. In all
experiments a background preference of 1 was used.

The most challenging part of using the food web framework is the problem of
determining how the food web should be assembled. This problem has not been
tackled in this thesis, but two simple approaches have shown that a food web struc-
ture indeed enhances the possibilities for coexistence.

The simplest method to construct the preference matrix is a null model where all
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preferences are selected randomly from [0; 1]. In section 7.3.1 this method resulted
in a state where 7 species coexist with low biomass fluctuations. No investigation
has been carried out to how likely the null model is to produce multi-species states,
but the example illustrates that differing preference strengths indeed can promote
coexistence.

As a second approach food webs were constructed using the niche model (Williams
& Martinez (2000)) to show that the structure of a food web indeed induces coex-
istence. The generated preferences only have links either present ’1’ or absent ’0’,
and a resulting 14 species cyclic state was demonstrated in section 7.3.2. Common
for the resulting stable preference matrices of the niche model is that most species
are cannibals, which in section 7.2 was shown to promote coexistence due to 1)
increased capability of retrieving suitable food items, and 2) that cannibalism plays
the role of a damper since energy is dissipated from intake to production of new
recruits. As an experiment a 0.2 preference was added to the zero preferences in
the 14 species preference matrix, and this resulted in a 11 species steady-state.

Both the null model and the 0.2 preference addition in the niche model experi-
ment produced communities with low biomass oscillations. Both are examples that
many weak links dampens oscillations so that the risk of stochastic extinction is low-
ered. Weak links can thus be important for stability and species persistence, and
empiric seems to agree that natural food webs indeed are characterised by many
weak and fewer strong interactions (McCann et al. (1998)).

That both food web structure and preference strengths play a role for coexistence
calls for methods that incorporate both along with many weak links in a top-down
method for constructing food webs. Also it will be interesting to extend the niche
model. The niche model constructs the preference matrices by assuming that some
abstract one-dimensional niche trait determines the feeding relations among species.
Thus it could be interesting examine the role of introducing a multi-dimensional
niche trait to describe inter-species feeding relations.

The top-down approaches for food web construction does not provide any ex-
planation for the structure of a food web, but are merely capable of producing webs
with statistics similar to empiric food webs. It might even be so that the produced
webs could not have evolved in nature. Natural food webs are formed by their
history from species invasion, extinction, cascades, and evolutionary mutations on
an even longer time-scale. A bottom-up assembly approach that takes into account
a longer time-scale is needed to study the emergence of food web structures. The
cases of species invasion and evolution should be considered independently to keep
complexity down, but the concepts are not expected to yield very different results
since species for invasion in surrounding communities not are expected to be very
different from the species already present. As shown in e.g. Scheffer & van Nes
(2006) the second time-scale may even assist in coexistence since species that goes
extinct in a long transient can be stabilised by the weak forces taking place on the
long time-scale. The second time-scale can also be interesting when studying hu-
man interactions since these may take place on a short time-scale that can increase
selection pressures towards new niches so that processes on the longer time-scale
plays a larger role on shorter time-scales. Such studies could hence allow assessment
of the relative importance of i.e. ecological and evolutionary consequences of human
interactions.

Species may have variable feeding habits. This is partly implemented in the
size-structured model since individuals changes food items throughout their life his-
tory through size-dependent predation implemented with the size-selection function.
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However, species may also change their diet if i.e. their favourite prey becomes rare.
Such a mechanism is referred to as switching, and in section 7.5 a simple example of
switching is studied. In the study each size w individual is only allowed to feed on
the background and the single species that provides the largest amount of suitable
food items. This promotes coexistence since no species are allowed to suddenly
explode in abundances, and since species populations that are decreasing will ex-
perience a decreasing predation mortality. Biomass oscillations are low, but noisy,
in the switching experiment since the constant diet shifts stabilises the biomass
level. This extreme degree of switching is of course quite unnatural, and it would
be interesting to study more realistic impacts of switching where switches i.e. do
not take place in ’0’ to ’1’ jumps and vice versa, but that some weaker links will
be maintained to less abundant species. Also the switching behaviour should be
incorporated in a food web structure since a species is not likely to be capable of
switching its diet to all species.

To conclude the discussion on food web structure induced coexistence the most
interesting future studies are summarised: 1.a) Development of top-down meth-
ods for constructing food webs that produce food web structures with differing
preference strengths that include many weak links. 1.b) Examination of the role of
introducing multi-dimensional niche traits to describe inter-species feeding relations
in a model similar to the niche model (Williams & Martinez (2000)). 2.a) Studies
of the emergence of size-structured food webs from bottom-up assembly processes
using two time-scales. 2.b) Studying promotion of coexistence via the second time-
scale. 2.c) Studies of the ecological and evolutionary effects of human interactions.
3) More realistic studies of switching induced coexistence. 4) Empirical research
into the structure of preference matrices in natural size-structured food webs to
validate theoretical results.

8.3 Numerical Setup

The computational load of the size-structured model is naturally much higher than
for the unstructured models since for each time-step a PDE is solved for each species
along with +100 ODEs for the dynamics of the background spectrum. Luckily the
ODEs can be solved analytically, and implementing the numerical setup with care
do indeed allow the model to be used as a size-structured food web framework.
A 10 species 1000 years simulation can i.e. be run in one minute on a Pentium
M 760 (2.0GHz, 2MB L2 cache, 533MHz FSB, 1.0GB DDR2 SDRAM) using
Matlab. Implementation in a more computationally efficient programming language
can speed up computation further.

To solve the PDEs the semi-implicit Upwind scheme is used, and as discussed
in chapter 4 implementation of the QUICK scheme along with the techniques by
Zijlema (1996) can be expected to speed up simulations further since fewer grid
points and smaller ∆t’s then can be used. This will furthermore reduce the numer-
ical diffusion compared to the semi-implicit Upwind scheme. It should, however, be
noted that numerical diffusion in the semi-implicit Upwind scheme was concluded
not to play any qualitative role for the results of simulations.
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9
Conclusion

A simple size-structured model of marine ecosystems has been developed. The
model is denoted simple since only one trait, the ultimate body weight w∞, is used
to distinguish species. The most important part of the model is the bioenergetic
growth model that allocates the acquired energy from food intake into somatic
growth, maintenance, and reproduction. Individuals obtain their food intake from
size-dependent predation through a size-selection function, and a background spec-
trum is included to provide suitable food items for the smallest individuals. The
environment of an individual is completely determined by the background spectrum
and the spectra of all species. From the environment the food intake is calculated,
and from this the mortality and reproduction of the individuals are obtained.

Coexistence has been demonstrated in the setting of a completely mixed envi-
ronment where everybody is capable of eating everybody if they are of a suitable
size. Individuals of a small species can reach the size of maturation solely on back-
ground resources and thus maintain the species population. Large species cannot
do so, and need the possibility of predation on larger food items as i.e. the smaller
species. Large species thus uses the smaller species as a trophic ladder to reach the
size of maturation. The trophic ladder mechanism gives rise to coexistence among
different sized w∞ species. Even though it is possible also to have coexisting species
in between the steps of the ladder the mechanism is not expected to be responsible
for major parts of the biodiversity that is seen in nature. The trophic ladder is a
food web structure that emerges from lower level processes, and in the discussion
it is suggested that adding more traits to distinguish species might lead to other
mechanisms for coexistence.

The structure of a food web plays an important role for multi-species coexis-
tence. The size-structured model was generalised to be used as a framework for
size-structured food webs. In the model species can have preferences in [0; 1] for
both other species and the background resources. The preferences times the size-
selection function correspond to interaction strengths in classical food webs why
preference matrices are expected to have higher connectance values than interac-
tion matrices. It was demonstrated that both the structure and preference strengths
are important for coexistence. Generated food webs consists mainly of cannibalistic
species since cannibalism promotes coexistence. In the discussion it was suggested
that top-down approaches of food web construction that produce food web struc-
tures with differing preference strengths would be interesting to develop since both
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are important for coexistence. The examined food web structures were produced
with the niche model (Williams & Martinez (2000)) which uses a one-dimensional
niche trait to describe inter-species feeding relations, and it was suggested that the
niche model should be extended so that the role of multi-dimensional niche traits
can be studied.

Top-down approaches for food web construction provides no explanation for
the structure of a food web, and the discussion suggests research into bottom-up
assembly processes where size-structured food web structures emerge from processes
on a longer time-scale due to species invasions and/or evolutionary mutations on an
even longer time-scale. This second time-scale can also play a role for coexistence
since the weak forces on the longer time-scale may stabilise species that goes extinct
on a long ecological time-scale. The second time-scale will also enable studies of
ecological and evolutionary consequences of human interactions.

Species may have variable feeding habits, which is partly included in the size-
structured model via the size-selection function since individuals change food items
throughout their life history. A species may however also change its diet if i.e.
its favourite prey becomes rare. A simple version of this switching behaviour was
demonstrated to promote existence in the case where a size w individual only feeds
on the background spectrum and the single species that provides the largest amount
of food. It would be interesting to examine more realistic switching behaviour where
the preference switches do not occur with ’0’ to ’1’ transitions, and where a food
web structure is included so that species cannot switch to all species.

In conclusion three different mechanisms has been located for species coexistence:
1) the trophic ladder mechanism, 2) food web structure and preference strengths,
and 3) environment dependent food web structures that allow i.e. switching be-
haviour. This clearly shows that the size-structured model of this thesis can be used
as a more realistic multi-species modelling framework, compared to the classical un-
structured models, for ecosystems where size-dependent processes are important.
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Glossary

This list clarifies some words and definitions used in the thesis. This is mainly
to help engineers in understanding biological terms, and to clarify some technical
definitions for biologists.

Benthic species

Species that are confined to the sea floor. Mostly species that have limited
moving capabilities in their 2D environment. See also Demersal and Pelagic
species.

Demersal species

Species that spend most of their time on the sea floor. See also Benthic and
Pelagic species.

Density dependence

When the size of a population is regulated by the size of the population itself.
I.e. through food limitations.

Determinate growth

See Indeterminate growth.

Euryhaline species

Species living in waters with high variation in salinity.

Gonad

Sexual gland. That is an organ that produces gametes (ova and sperm).

Indeterminate growth

Species that continue growth after maturation are said to display indetermi-
nate growth. Conversely determinate growth means that the species stops
growth upon maturation (often one-time spawners).

Irreversible mass

The part of the individual’s body mass that cannot be reduced (also known
as somatic mass); this means, organs, skeleton, and to a high degree muscles
(∼ the structural biovolume of the individual). See also Reversible mass.
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Mean value

Defined by: f̄ = 1
τ

∫ t+τ

t
f(t) dt. See also Standard Deviation.

Ontogenetic growth/development/shift

The life history of an individual from egg/embryo to adult. An ontogenetic
shift means that the individual undergoes a sudden shift in its life trajectory;
e.g. metamorphosis (i.e. egg stage to juvenile), maturation (juvenile to adult
stage where reproduction starts), etc.

Pelagic species

Species that forage in the entire water column. See also Benthic and Demersal
species.

Percentile

Percentiles are often used in i.e. boxplots, which are statistical plots used to
illustrate time series of 2D plots (i.e. a spectrum). As an example a 25%
percentile marks the level along the y-axis where no more than 25% of the
points in the time series at x lie below. The term percentile is equivalent with
the term quantile, which however is attributed with different notations and
terminology (cf. a standard statistical textbook). Special percentiles are 50%
(median), 0% (minimum), and 100% (maximum) percentiles.

Poikilothermic organisms

Organisms where the internal temperature primarily follows the temperature
of the environment. Fish belongs to this group compared to i.e. humans
who are endotherms, which means that they keep a constant internal tem-
perature (also known as homeotherms). Like endotherms ectotherms (i.e. ter-
restrial reptiles) require constant internal temperature but unlike endotherms
they cannot control the temperature themselves, but has to use environmental
heating and cooling sources.

Reversible mass

The mass of an individual that can be reduced; this means lipids (fat reserves),
gonads, and to some parts the liver and muscles. The reversible mass can be
considered a reserve that can be consumed when food resources are sparse. An
individual with zero reversible mass is very vulnerable for starvation death.
Reversible mass is often referred to as lipid mass, which is clearly not strictly
correct. See also Irreversible mass.

Somatic growth/tissue

Growth that causes increase of the individual’s weight and size. Instead of
somatic growth energy may be allocated into reproduction and maintenance
of the metabolic requirements. So somatic tissue is the structural biovolume
of the individual. See also Irreversible mass.

Standard deviation

Defined by: σ =
√

1
τ

∫ t+τ

t
(f(t)− f̄)2 dt. See also Mean value.
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Trophic ladder

The concept used when studying coexistence in chapter 6. Small species can
reach the size of maturation solely on background resources and thus maintain
their population. This is not possible for larger species since the size selectivity
in the choice of food items required intake from the smaller species to obtain
enough energy to grow to maturation size. The larger species thus uses the
smaller species as a trophic ladder.

Trophic transfer efficiency

A measure of how efficient energy is transferred between trophic levels. If a
species i.e. has high loss of energy due to maintenance of body temperature
then it will have a low trophic efficiency. Considering efficiency compared to
resource input may however often be more informative. Species high up in
the trophic hierarchy will thus have the lowest efficiency since they feed on
species that have transfer loss in lower trophic transfers.
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Acronyms

DDE Delay Differential Equation
DEB Dynamical Energy Budgets
DFT Discrete Fourier Transform

EBT Escalator Boxcar Train

IGP Intraguild Predation

ODE Ordinary Differential Equation

PDE Partial Differential Equation
PSP Physiologically Structured Population

QUICK Quadratic Upwind Interpolation for Convective
Kinematics

SSB Spawning Stock Biomass
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62. P. A. Marquet, R. A. Quiñones, S. Abades, F. Labra, M. Tognelli, M. Arim,
and M. Rivadeneira. Scaling and power-laws in ecological systems. The
Journal of Experimental Biology, 208:1749–1769, 2005.

M. Pedersen, Friday 28th July, 2006 Coexistence in size-structured ecosystems



References 129

63. N. D. Martinez, R. J. Williams, and J. A. Dunne. Diversity, Complexity,
and Persistence in Large Model Ecosystems. In M. Pascual and J. A. Dunne,
editors, Ecological Networks: Linking Structure to Dynamics in Food Webs.
Oxford University Press, 2005. ISBN 0-19-518816-0.

64. K. McCann, A. Hastings, and G. R. Huxel. Weak trophic interactions and
the balance of nature. Nature, 395:794–798, 1998.

65. A. G. McKendrick. Applications of Mathematics to Medical Problems. Pro-
ceedings of the Edinburgh Mathematical Society, 44:98–130, 1926.

66. T. McMahon. Size and Shape in Biology. Science, 179:1201–1204, 1973.

67. T. A. McMahon and J. T. Bonner. On size and life. Scientific American
Books, Inc., 1983. ISBN 0-7167-5000-7.

68. J. A. J. Metz and O. Diekmann, editors. The Dynamics of Physiologi-
cally Structured Populations, volume 68 of Lecture Notes in Biomathematics.
Springer-Verlag, 1986. ISBN 3-540-16786-2.

69. MUMM. Management Unit of the North Sea Math-
ematical Models – North Sea facts, March 21, 2006.
http://www.mumm.ac.be/EN/NorthSea/facts.php.

70. W. W. Murdoch, B. E. Kendall, R. M. Nisbet, C. J. Briggs, E. McCauley, and
R. Bolser. Single-species models for many-species food webs. Nature, 417:
541–543, 2002.

71. S. D. Mylius, K. Klumpers, A. M. de Roos, and L. Persson. Impact of
intraguild predation and stage structure on simple communities along a pro-
ductivity gradient. The American Naturalist, 158(3):259–276, 2001.

72. R. M. Nisbet, E. B. Muller, K. Lika, and S. A. L. M. Kooijman. From
molecules to ecosystems through dynamic energy budget models. Journal of
Animal Ecology, 69:913–926, 2000.

73. D. Pauly and R. S. V. Pullin. Hatching time in spherical, pelagic, marine,
fish eggs in response to temperature and egg size. Environmental Biology of
Fishes, 22(4):261–271, 1988.

74. M. Pedersen, J. H. Hales, and R. W. Fléron. Linear Two-Axis MOEMS Sun
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A
Analytical Solutions

This appendix gives analytical solutions to some of the equations used in the models
of the thesis. By using these results in the simulations substantial computation time
can be avoided. This chapter contains mainly mathematical derivations, which
means that the reader is referred to the model chapters for ecological interpretation
of the equations.

A.1 Modelling the Background Spectrum

The populations growth functions (3.37a)–(3.37c) for the background spectrum are
solved analytically in this section. To ease notation we carry out the derivations in
the unstructured model domain.

A.1.1 Logistic Growth Model

The logistic growth model for a resource of size w is given by:

Ṙw = Rw(t)rw

(
1− Rw(t)

Kw

)
− µ(N,w)Rw(t) (A.1)

N(w, t) =
∑
w

Rw(t) +
∑
i

ni(t) (A.2)

We may reduce µ(N,w) to µ(
∑

i ni(t), w) if the background is not experiencing
predation from the background. This is however not important for the problem at
hand.

From time step t to t+ dt the mortality may be assumed constant. I.e. in the
PDE solution we do not vary it between steps either. However, remember to update
the value of the mortality in each iteration.

With this simpler notation we obtain:

Ṙw = Rw(t)rw

(
1− Rw(t)

Kw

)
− µwRw(t) (A.3)

= Rw(t)(rw − µw)

1− Rw(t)

Kw

(
1− µw

rw

)
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134 A: Analytical Solutions

= Rw(t)r̃w

(
1− Rw(t)

K̃w

)
(A.4)

where r̃w and K̃w are interpreted as the effective growth rate and carrying capacity.
To find a solution by integration we reformulate the problem with the dimensionless
variable y = Rw

K̃w
:

dy

dt
= yr̃w (1− y) ⇔ (A.5)∫ t

0

1

y(1− y)

dy

dt′
dt′ =

∫ t

0

r̃w dt′

and we get:

r̃wt =

∫ y(t)

y0

1

y(1− y)
dy =

∫ y(t)

y0

1

y
dy +

∫ y(t)

y0

1

1− y
dy

=
[
ln |y| − ln |1− y|

]y(t)
y0

=

[
ln

(
|y|

|1− y|

)]y(t)
y0

= ln

(
|y(t)||1− y0|
|1− y(t)||y0|

)
A population number is clearly positive so that y(t) > 0. With the dimensionless
variable y we have effectively scaled the carrying capacity to 1, which means that
1− y(t) > 0. This gives us:

y(t)

1− y(t)
=

y0
1− y0

er̃wt ⇔

y(t) =
y0

(1− y0)e−r̃wt + y0
(A.6)

Solution:

Rw(t) = K̃w
Rw,0

(K̃w −Rw,0)e−r̃wt +Rw,0

(A.7)

Or in substituted form:

Rw(t) = Kw

(
1− µw

rw

)
Rw,0(

Kw(1− µw

rw
)−Rw,0

)
e−(rw−µw)t +Rw,0

(A.8)

A.1.2 Parabolic Growth Model

Using the same procedure as for the logistic model:

Ṙw = Rw(t)rw

(
1− Rw(t)

2

K2
w

)
− µwRw(t)

= Rw(t)(rw − µw)

(
1− rw

rw − µw

Rw(t)
2

K2
w

)
(A.9)

= Rw(t)r̃w

(
1− Rw(t)

2

K̃2
w

)
(A.10)

This can be solved using partial fraction decomposition as in the case for the logistic
growth:
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r̃wt =

∫ y(t)

y0

1

y(1− y2)
dy

=

∫ y(t)

y0

1

y
dy +

1

2

(∫ y(t)

y0

1

(1− y)
dy −

∫ y(t)

y0

1

(1 + y)
dy

)

=
[
ln |y| − 1

2

(
ln |1− y|+ ln |1 + y|

)]y(t)
y0

=

[
ln |y| − 1

2
ln
(
1− y2

)]y(t)
y0

=

[
ln

(
|y|√
1− y2

)]y(t)
y0

= ln

(
|y(t)|
|y0|

√
1− y20

1− y(t)2

)
As in the case of the logistic growth we have y(t) ∈ [0; 1] which gives us:

y20
1− y20

e2r̃wt =
y(t)2

1− y(t)2
⇒

y(t) =

√
y20

(1− y20)e
−2r̃wt + y20

(A.11)

Back-substituting we arrive at:

Rw(t) = K̃w

√
R2

w,0

(K̃2
w −R2

w,0)e
−2r̃wt +R2

w,0

(A.12)

=

√
rw − µw

rw
Kw

√
R2

w,0

( rw−µw

rw
K2

w −R2
w,0)e

−2(rw−µw)t +R2
w,0

(A.13)

A.1.3 Semi-chemostatic Growth Model

Again:

Ṙw = rw
(
Kw −Rw(t)

)
− µ(N,w)Rw(t) (A.14)

= (rw + µw)

(
rwKw

rw + µw
−Rw(t)

)
= r̃w

(
K̃w −Rw(t)

)
This integral is also easily solved by integration:

∫ t

0

1

K̃w −Rw(t)

dRw

dt′
dt′ =

∫ t

0

r̃w dt′ ⇔

r̃wt =

∫ Rw(t)

Rw,0

1

K̃w −Rw

dRw = −
[
ln(K̃w −Rw)

]Rw(t)

Rw,0

⇔

Rw(t) = K̃w −
(
K̃w −Rw,0

)
e−r̃wt (A.15)
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Or in substituted form:

Rw(t) =
rwKw

rw + µw
−
(

rwKw

rw + µw
−Rw,0

)
e−(rw+µw)t (A.16)

For comparison with logistic growth model (A.3) we may formulate (A.14) as:

Ṙw = Kwrw

(
1− Rw(t)

Kw

)
− µ(N,w)Rw(t) (A.17)

where we note that the semi-chemostatic regeneration rate is proportional with the
carrying capacity and the logistic model is proportional with resource density. This
gives faster regeneration times for the semi-chemostatic model.

A.2 Available Food from a Community Spectrum

The amount of available food for a predator wp from the constant community spec-
trum Nc(w) is found by solving the integral:

ϕi,c(wp) =

∫ ∞

0

Nc(w)wsi(w,wp) dw

=

∫ ∞

0

κw1−λ exp

[
− ln2

(
w

βwp

)
/(2σ2)

]
dw (A.18)

To ease notation we solve an equivalent integral by using the substitution lnw = x:∫ ∞

0

Kwae−b ln2(cw) dw = K

∫ ∞

0

wae−b(lnw+ln c)2 dw

= K

∫ ∞

−∞
ex(a+1)e−b(x+ln c)2 dx = K

∫ ∞

−∞
e−b((x+ln c)2− a+1

b x) dx

= K

∫ ∞

−∞
exp

[
−b
(
x−

(a+ 1

2b
− ln c

))2
+ (a+ 1)

(a+ 1

4b
− ln c

)]
dx

= K exp

[
(a+ 1)

(a+ 1

4b
− ln c

)]∫ ∞

−∞
exp

[
−b
(
x−

(a+ 1

2b
− ln c

))2]
dx

= K

√
π

b
exp

[
(a+ 1)

(a+ 1

4b
− ln c

)]
= K

√
π

b
exp

[
(a+ 1)2

4b

]
c−(a+1) (A.19)

where the integration is carried out by realising that the integrand is a normal
distribution with mean value a+1

2b − ln c. By substituting into the variables from
(A.18) we get:

ϕi,c(wp) =
√
2πκσβ2−λ

i exp

[
1

2
σ2
i (2− λ)2

]
w2−λ

p (A.20)
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A.3 Predation Mortality in a Community spectrum

The size-dependent mortality for an individual of size w in a community spectrum
Nc = κw−λ is given by:

µ(w) =

∫ ∞

0

v(wp)Nc(wp)s(w,wp) dwp

= κζγ

∫ ∞

0

wq−λ exp

[
− ln2

(
w

βwp

)
/(2σ2)

]
dwp (A.21)

This integral can be evaluated with the use of (A.19):

µ(w) =
√
2πκσβ1+q−λζγ exp

[
1

2
σ2
i (1 + q − λ)2

]
w1+q−λ

p (A.22)

A.4 Steady-State of a Species in a Community

In the following we will solve:

∂

∂w

(
g(w)n(w)

)
= −µ(w)n(w) (A.23)

to obtain the steady-state spectrum equation n(w) of a single species in the com-
munity spectrum. Equation (A.23) may also be formulated as:

1

g(w)n(w)

∂

∂w

(
g(w)n(w)

)
=

∂

∂w
ln
(
cug(w)n(w)

)
= −µ(w)

g(w)
(A.24)

where cu is a unity scalar with units that makes g(w)n(w) unit free [m3·year]. This
can be integrated to obtain the solution:

ln
(
cug(w)n(w)

)
= −

∫
µ(w)

g(w)
dw + c ⇔

n(w) =
K(w∞)

g(w)
exp

(
−
∫
µ(w)

g(w)
dw

)
(A.25)

where K(w∞) = exp(c)/cu [m−3/year] is the constant from the integration. We use
the mortality and growth functions from (5.3) and (5.2). This allows us to write
(A.25) as:

n(w) =
K(w∞)

αhwk − αhwk−r
∞ wr

exp

(
−
∫

µpw
k−1

αhwk − αhwk−r
∞ wr

dw

)
× exp

(
−
∫

µ0

αhwk − αhwk−r
∞ wr

dw

)
(A.26)

The challenge ahead is to solve the two integrals in the exponential functions.

Solving the First Integral

We start out by solving the first integral in a simpler notation:

µp

∫
wk−1

awk − bwr
dw =

µp

a

∫
w−1

1− b
aw

r−k
dw =

µp

a(r − k)

∫
1

x(1− b
ax)

dx

=
µp

a(r − k)
ln

(
x

1− b
ax

)
=

µp

a(r − k)
ln

(
wr−k

1− b
aw

r−k

)
(A.27)
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where the substitution x = wr−k has been used. If we switch back to the original
notation the solution looks as:

µp

αh(r − k)
ln

 wr−k

1−
(

w
w∞

)r−k

 (A.28)

The first exponential function may now be evaluated to:

exp

(
−
∫

µpw
k−1

αhwk − αhwk−r
∞ wr

dw

)
= exp

− µp

αh(r − k)
ln

(
wr−k

1−
(

w
w∞

)r−k

)
=

 wr−k

1−
(

w
w∞

)r−k

− µp
αh(r−k)

= w− µp
αh

(
1−

(
w

w∞

)r−k
) µp

αh(r−k)

(A.29)

Solving the Second Integral

The second integral we solve for r = 1 since the general solution is a long expression
involving the β-function:

µ0

∫
1

awk − bw
dw =

µ0

a

∫
w−k

1− b
aw

1−k
dw =

µ0

a(1− k)

∫
1

1− b
ax

dx

=
−µ0

b(1− k)
ln
(
1− b

a
x
)
=

−µ0

b(1− k)
ln
(
1− b

a
w1−k

)
(A.30)

where the substitution x = w1−k has been used. If we go back to the original
notation we get:

−µ0

αhwk−1
∞ (1− k)

ln

(
1−

(
w

w∞

)1−k
)

(A.31)

The second exponential function in (A.26) can be evaluated to:

exp

(
−
∫

µ0

αhwk − αhwk−r
∞ wr

dw

)
= exp

(
µ0

αhwk−1
∞ (1− k)

ln

(
1−

(
w

w∞

)1−k
))

=

(
1−

(
w

w∞

)1−k
) µ0

αhw
k−1
∞ (1−k)

(A.32)

We may include the generality of r and avoid introducing the β-function by doing
an approximation when deriving the integral (A.30):

µ0

∫
1

awk − bwr
dw =

µ0

a

∫
w−k

1− b
aw

r−k
dw =

µ0

a(r − k)

∫
x

1−r
r−k

1− b
ax

dx

≈ µ0

a(r − k)

∫
1

1− b
ax

dx =
−µ0

b(r − k)
ln
(
1− b

a
x
)

=
−µ0

b(r − k)
ln
(
1− b

a
wr−k

)
(A.33)
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where the substitution x = wr−k has been used. The approximation used is r ≈
1 ⇒ x

1−r
r−k ≈ 1. This result should clearly not be used far away from r ≈ 1. When

obtaining the spectrum equation in the next section we comment on the missing r
generality in (A.30).

A.4.1 The Solution

Now we can write the solution (A.26) explicitly. First we find the solution with no
background mortality (µ0 = 0) where the second exponential function naturally is
1. The equation for the single species spectrum with no background mortality thus
becomes:

n(w) =
K(w∞)

αhwk − αhwk−r
∞ wr

w− µp
αh

(
1−

(
w

w∞

)r−k
) µp

αh(r−k)

=
K(w∞)

αh
w−k− µp

αh

(
1−

(
w

w∞

)r−k
) µp

αh(r−k)
−1

(A.34)

where we see that the spectrum has a scaling part that scales with w−k− µp
αh , and a

cut-off when w∞ is approached. The solution where the mortality also includes a
background mortality can only be derived in exact explicit form in the r = 1 case:

n(w) =
K(w∞)

αh
w−k− µp

αh

(
1−

(
w

w∞

)1−k
) µp

αh(1−k)
−1+

µ0

αhw
k−1
∞ (1−k)

=
K(w∞)

αh
w−k− µp

αh

(
1−

(
w

w∞

)1−k
)µp+µ0w1−k

∞
αh(1−k)

−1

(A.35)

The inclusion of a background mortality thus has the effect of changing the cut-off
part of the spectrum. If r ≈ 1 we get from the discussion in the previous section:

n(w) =
K(w∞)

αh
w−k− µp

αh

(
1−

(
w

w∞

)r−k
)µp+µ0wr−k

∞
αh(r−k)

−1

(A.36)

We thus see that small deviations of r from r = 1 only has a minor effect on the
shape of the cut-off of the spectrum. The solution (A.36) is thus the exact solution
for r = 1 both with and without background mortality. It is also exact for r ̸= 1 if
background mortality is not included, but only approximate with added background
mortality for r ≈ 1.

A.4.2 Scaling of K(w∞)

K(w∞) should be selected so that the summation of all species sum up to the
community spectrum Nc(w):

Nc(w) =
∑
w∞

n(w;w∞) (A.37)
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140 A: Analytical Solutions

Clearly only the scaling part of n(w;w∞) is important in the summation. As shown
in figure 5.1(b) the smaller species are dominating at smaller sizes. This means that
we may use the approximation:

Nc(w)
∣∣∣
w=w∞

=
K(w∞)

αh
w

−k− µp
αh∞ ⇔

K(w∞) = κcαhw
2k−q−2+

µp
αh∞

however, since we are clearly overestimating K(w∞) when using w = w∞ where the
cut-off has set in, the scaling should more correctly be written as:

K(w∞) ∝ κcαhw
2k−q−2+

µp
αh∞ (A.38)

This scaling relation was used for figure 5.1(b), which qualifies the approximation.
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